
Mousetoxin: Exceedingly verbose reimplementation of
Ratpoison

Troels Henriksen (athas@sigkill.dk)

29th November 2009

1

Chapter 1

Introduction

This paper describes the implementation of Mousetoxin, a clone of the X11 window
manager Ratpoison. Mousetoxin is implemented in Literate Haskell, and the full
implementation is presented over the following pages. To quote the Ratpoison
manual:

Ratpoison is a simple Window Manager with no fat library dependen-
cies, no fancy graphics, no window decorations, and no rodent depen-
dence. It is largely modeled after GNU Screen which has done wonders
in the virtual terminal market.

All interaction with the window manager is done through keystrokes.
Ratpoison has a prefix map to minimize the key clobbering that crip-
ples EMACS and other quality pieces of software.

Ratpoison was written by Shawn Betts (sabetts@vcn.bc.ca).

Apart from serving as a literate example, partly for me and partly for others, of
how to define a practical side-effect heavy Haskell program, Mousetoxin also serves
as an experiment to answer two other questions of mine:

• Can Haskell programs be written that obey common Unix principles (such
as responding to SIGHUP by reloading their configuration file) without too
much trouble, and without turning the entire program into an impure mess?

• How feasible is it to write nontrivial programs in Literate Haskell? This is
partially a test of the adequacy of available Haskell tools, partially a test of
Literate Programming as a concept in itself.

2

sabetts@vcn.bc.ca

Chapter 2

Startup logic

The Main module defines the main entry point for the program when invoked,
namely the function main. We shall do all our command-line parameter processing
here, so that the rest of the program can restrict itself to the actual logic of managing
windows.

module Main (main) where

import Control .Applicative
import System.Console.GetOpt
import System.Environment
import System.Exit
import System.IO

We import the window management logic.

import Mousetoxin.Config
import Mousetoxin.Core

The startup function extends the default (static) configuration with information
gleamed from the environment, then with the values specified by the command
line options (if any), and finally passes the resulting configuration to the window
management logic entry point.

The DISPLAY environment variable is the standard method of communicating
to X programs which display they should connect to. Programs such as startxwill
automatically set it appropriately before running .xsession/.xinitrc (or the program
indicated on the command line), and as Mousetoxin will most likely be started as
part of the general X session startup, the DISPLAY environment variable is where we
will find out which display we should connect to. We will, however, support an ex-
plicit --display command-line option in case the user desires to have Mousetoxin
connect to some other arbitrary display.

main :: IO ()
main = do

opts ← getOpt RequireOrder options < $ > getArgs
dstr ← getEnv "DISPLAY" ‘catch‘ (const $ return "")
let cfg = defaultConfig{displayStr = dstr }

3

CHAPTER 2. STARTUP LOGIC 4

case opts of
(opts ′, [], [])→ mousetoxin =<< foldl (>>=) (return cfg) opts ′

(,nonopts, errs)→ do
mapM _ (hPutStrLn stderr) $ map ("Junk argument: "++) nonopts
usage ← usageStr
hPutStrLn stderr $ concat errs ++ usage
exitFailure

Our command-line options are described as mappings from their short and long
names (eg. -h and --help) to a (monadic) function that extends the Mousetoxin
configuration (taking into account the option argument if there is one).

options :: [OptDescr (WMConfig → IO WMConfig)]
options = [optHelp, optVersion, optDisplay]

The --help option follows standard Unix convention by having the short name
-h and immediately terminating Mousetoxin after running. The code for generating
the option list is factored out into a definition by itself, because we also wish to
display it if the user specifies an invalid option.

optHelp :: OptDescr (WMConfig → IO WMConfig)
optHelp = Option [’h’] ["help"]

(NoArg $ λ → do
hPutStrLn stderr =<< usageStr
exitSuccess)
"Display this help screen."

usageStr :: IO String
usageStr = do

prog ← getProgName
let header = "Help for "++ prog ++ " "++ versionString
return $ usageInfo header options

The --version option is very similar, also terminating the program after print-
ing the version information.

optVersion :: OptDescr (WMConfig → IO WMConfig)
optVersion = Option [’v’] ["version"]

(NoArg $ λ → do
hPutStrLn stderr ("Mousetoxin "++ versionString ++ ".")
hPutStrLn stderr "Copyright (C) 2009 Troels Henriksen."
exitSuccess)

"Print version number."

We do not care to check the format of the --display option parameter at this
stage, as this checking will be done by much more knowledgeable code down the
line, when we attempt to actually connect to the X server.

optDisplay :: OptDescr (WMConfig → IO WMConfig)
optDisplay = Option [’d’] ["display"]

(ReqArg (λarg cfg → return $ cfg{displayStr = arg }) "dpy")
"Specify the X display to connect to."

Chapter 3

Mousetoxin.Core

The Core module concerns itself with the basics of maintaining a consistent win-
dow manager state, as well as initiating and maintaining communication with the
X server.

module Mousetoxin.Core
(mousetoxin
,WM
,WMCommand
, cmdError
, liftWM
,WMState (. .)
,WMConfig (. .)
,WMSetup (. .)
,SplitType (. .)
,FrameTree (. .)
,WindowFrameTree
,ManagedWindow (. .)
, isManaged
, isDisplayed
,withDisplay
, frameByPath
, changeAtPath
,findFramePath
, leafPaths
, changeFrames
, focusOnWindow
, focusOnFrame
, focusWindowPair
, focusWindowNumber
, focusWindow
, otherWindow
, grabKeys
,message
, createOverlay
, installSignalHandlers
, uninstallSignalHandlers

5

CHAPTER 3. MOUSETOXIN .CORE 6

, spawnChild
, rootMask
, clientMask
, scanWindows
, evalCmdString
,CommandArg (. .)
, consumingArgs
, accepting
,PlainString (String)
,PlainInteger (Integer)
,WMWindow (Window)
,withGrabbedKeyboard
, readKey
, getInput
, doGetInput
,EditCommand (. .)
,EditorState (. .)
,EditorContext (. .)
,CommandResult (. .)
) where

We use the X11 library for communicating with the X server. X11 is an FFI-
wrapper around Xlib and its interface closely mirrors the C library. While this
is potentially more brittle than an X library written purely in Haskell, it permits
much easier adaptation of new improvements to the Xorg X server, as focus will be
on supporting new server extensions in Xlib or other libraries written in C. Besides,
I am not aware of any implementation of the X11 protocol written in Haskell. Note
that we hide the name refreshKeyboardMapping from Graphics.X11 .Xlib; this is
because it is also defined in the Graphics.X11 .Xlib.Extras module.

import Graphics.X11 .Xlib hiding (refreshKeyboardMapping)
import Graphics.X11 .Xlib.Extras
import Graphics.X11 .Xlib.Font
import Graphics.X11 .Xlib.Misc
import Graphics.X11 .Xlib.Cursor

Additionally, we will make use of a range of various utility modules.

import Control .Applicative
import Control .Arrow
import Control .Concurrent
import Control .Exception (finally)
import Control .Monad .CatchIO hiding (bracket)
import Control .Monad .Error
import Control .Monad .Reader
import Control .Monad .State
import Data.Bits
import qualified Data.Foldable as F
import Data.List
import qualified Data.Map as M
import Data.Maybe

CHAPTER 3. MOUSETOXIN .CORE 7

import Data.Monoid
import Data.Ord
import Data.Time.Clock
import Foreign.C .String
import System.IO
import System.Posix .IO
import System.Posix .Process
import System.Posix .Signals
import System.Posix .Types

3.1 Frame Representation

First, we will define a representation for the division of the visible screen estate
into frames. The default Mousetoxin setup is to show a single full-screen window,
but it can at any time be split either horizontally (resulting in top-bottom stacking)
or vertically (resulting in left-right), repeated indefinitely. We represent this frame
configuration as a tree: a node can be either a leaf (a frame possibly containing
a window), a horizontal split, or a vertical split. Splits do not always divide the
screen space equally, and we must represent this as well. Additionally, it will be
convenient if we only use a single data constructor for both kinds of splits, with
an extra value (of type SplitType) indicating the direction of the split. We lose no
expressive power this way, as we can easily pattern-match on both the constructor
and this value.

We opt to store the two children of a split along with two proportions that in-
dicate the relative space allocation. For example, a 25/75 split between the two chil-
dren of a vertical split might be represented by Split Vertical (1, child1) (3, child2).
The values convey no information apart from their relative sizes, which means we
do not have to adjust the frame tree if the screen resolution changes. On the other
hand, if we need to make a modification such as “increase the size of the left child
of the split by ten pixels (and reduce the right by the same),” then we first need to
calculate the dimensions of the current split in pixels. On the other hand, we don’t
need to convert back: a proportion of 600/200, representing 600 pixels to the left
window and 200 to the right, is perfectly valid, and identical to 3/1.

The FrameTree type is parametrised on the type of its leaves, but this is only
so we can easily define instances for type-classes. In practice, we will only use the
WindowFrameTree type.

data SplitType = Vertical
| Horizontal

data FrameTree w = Frame (Maybe w)
| Split SplitType (Integer ,FrameTree w) (Integer ,FrameTree w)

type WindowFrameTree = FrameTree Window

We will often need to index, or change, the frame tree at certain locations, and
we therefore need a way to address nodes within it. As each node can be a leaf or
a split, we can create a simple and lightweight address type as a list of Either () ()-
values. A Left value will indicate the left branch of a split, a Right value the right
branch, and the end of the list will indicate the current node.

type FrameRef = [Either () ()]

CHAPTER 3. MOUSETOXIN .CORE 8

We define a function for retrieving the window (if any) at a given position in the
tree.

frameByPath :: FrameTree w → FrameRef → Maybe w
frameByPath (Frame w) [] = w
frameByPath (Split (,w)) (Left : rest) = frameByPath w rest
frameByPath (Split (,w)) (Right : rest) = frameByPath w rest
frameByPath = Nothing

Another function will be used for changing the tree at a given location — it can
be expected that most of these changes will involve changing the window at a leaf,
but we can handle changes in an arbitrary location.

changeAtPath :: FrameTree w
→ FrameRef
→ (FrameTree w → FrameTree w)
→ FrameTree w

changeAtPath (Split skind (x ,w) (y ,w ′)) (Left : rest) f =
Split skind (x , (changeAtPath w rest f)) (y ,w ′)

changeAtPath (Split skind (x ,w) (y ,w ′)) (Right : rest) f =
Split skind (x ,w) (y , (changeAtPath w ′ rest f))

changeAtPath v f = f v

We shall also have need of a function for finding the path to a given window.
Most notably, this will be needed when a window is destroyed, as we will have to
remove it from the frame setup (and possibly replace it with another). Note that
this definition makes use of the fact that Maybe is an applicative functor: the trick
to the function is the <|> operator, which in this case will return its left-hand side
if it’s a Just -value, it’s right-hand side otherwise.

findFramePath :: Eq w ⇒ FrameTree w → w → Maybe FrameRef
findFramePath (Split (,w) (,w ′)) e =

(Left ():)< $ > findFramePath w e
< | > (Right ():)< $ > findFramePath w ′ e

findFramePath (Frame (Just w)) e | e ≡ w = Just []
| otherwise = Nothing

findFramePath = Nothing

For some user commands, we will need to enumerate (or iterate across) all pos-
sible paths to leaves in a frame tree, so we define a function to return these. Note
that we also return paths leading to empty frames.

leafPaths :: FrameTree w → [FrameRef]
leafPaths (Frame) = [[]]
leafPaths (Split (,w) (,w ′)) =

map (Left ():) (leafPaths w) ++ map (Right ():) (leafPaths w ′)

Finally, let us define the function fulfilling the very purpose of the FrameTree:
allocating screen real estate to windows. In order to be general, we define a function
that calculates space for all nodes of the frame tree (except for the root), even those
that are splits or empty frames. For a given FrameTree, provided with a tuple
specifying the available space, we wish to obtain a list mapping each node to its

CHAPTER 3. MOUSETOXIN .CORE 9

screen location (upper-left corner) and dimensions. We use floating-point math
to split the available space, but are careful to ensure that we don’t lose pixels to
rounding errors. At worst, a frame may be given a pixel or two more than the
specified proportions might suggest, but even that is unlikely that the low numbers
we are working with.

renderFrames :: FrameTree w
→ (Dimension,Dimension)
→ [(FrameTree w , ((Position,Position), (Dimension,Dimension)))]

renderFrames f d = (f , ((0, 0), d)) : children f
where children (Split skind (x ,w) (y ,w ′)) =

let split = fromIntegral x / fromIntegral (x + y) :: Double
ldim = truncate $ split ∗ fromIntegral (acc d)
rdim = acc d − ldim
lefts = renderFrames w $ (dmut ◦ const) ldim d
rights = renderFrames w ′ $ (dmut ◦ const) rdim d

in lefts ++ map (translate $ fromIntegral ldim) rights
where translate = second ◦ first ◦ pmut ◦ (+)

(acc, pmut , dmut) = case skind of
Vertical → (fst ,first ,first)
Horizontal → (snd , second , second)

children = []

It is now easy to define a function that finds the position and size of all windows
contained in a frame tree. We merely call renderFrames and extract a window from
all Frame nodes that contain a window, discarding the rest.

allocateSpace :: FrameTree w
→ (Dimension,Dimension)
→ [(w , ((Position,Position), (Dimension,Dimension)))]

allocateSpace f d = concat $ map windowsOf $ renderFrames f d
where windowsOf (Frame (Just w), ds) = [(w , ds)]

windowsOf = []

For future convenience, we also define the membership of FrameTree in various
type-classes.

instance Functor FrameTree where
fmap f (Frame (Just w)) = Frame (Just $ f w)
fmap (Frame Nothing) = Frame Nothing
fmap f (Split (x ,w) (y ,w ′)) = Split Vertical (x , fmap f w) (y , fmap f w ′)

instance F .Foldable FrameTree where
foldMap f (Frame (Just w)) = f w
foldMap (Frame Nothing) = mempty
foldMap f (Split (,w) (,w ′)) = F .foldMap f w ‘mappend ‘ F .foldMap f w ′

3.2 Dynamic Window Manager State

The Window type by itself is a handle to a resource in the X-server, and does not
contain all the information that we wish to bind to the notion of a window in

CHAPTER 3. MOUSETOXIN .CORE 10

the Mousetoxin-sense. Therefore we define the ManagedWindow data type, which
will contain not just the Xlib window handle, but also miscellaneous information
supporting various Mousetoxin features. The fields of ManagedWindow will be
described in detail when they are used. We will still store plain Window s in the
frame tree, as various operations will change the fields in ManagedWindow , and
we do not want to update the leaves of the frame tree every time this happens. For
simplicity, our aim is that non-core code should not ever have to deal with plain
Window values, but rather only operate on ManagedWindow via helper functions.

data ManagedWindow = ManagedWindow
{window :: !Window
, accessTime :: !UTCTime
,windowWMTitle :: !String
, expectedUnmaps :: !Integer
, pointerCoords :: (Position,Position)
, sizeHints :: SizeHints
}

A ManagedWindow is uniquely identified by the Window handle it contains.

instance Eq ManagedWindow where
x ≡ y = window x ≡ window y

The expectedUnmaps field of ManagedWindow is necessary for properly han-
dling a subtlety of window management and will be described in detail later on.

We store the mutable window manager state in the WMState data structure;
this is the only data structure that will be changed as a result of command invoca-
tion by the user. At present, WMState stores a map of window handles to managed
windows structures. The assignment of numeric identifiers to windows is purely a
user-centric notion, but it is still of critical importance to ensure that no two win-
dows ever share a number, which the use of a Map will help with. The WMState
structure contains a number of fields that are exclusively used by specific commands
and facilities; these will be described in detail at their actual point of use.

data WMState = WMState
{managed :: !(M .Map Integer ManagedWindow)
, frames :: !WindowFrameTree
, focusFrame :: !FrameRef
, childProcs :: !(M .Map ProcessID (ProcessStatus →WM ()))
}

3.3 Static configuration

The user-provided program configuration is stored in a WMConfig structure; this
won’t normally change during program execution, but it might if the Mousetoxin
configuration file is reloaded. In Mousetoxin, keys are bound to command strings,
consisting of a command name and (optionally) arguments. The implementation of
command execution is described in Section 3.8 on page 32, while specific commands
are covered in Chapter 5 on page 45.

CHAPTER 3. MOUSETOXIN .CORE 11

data WMConfig = WMConfig
{displayStr :: !String
, prefixKey :: !(KeyMask ,KeySym)
, keyBindings :: !(M .Map (KeyMask ,KeySym) String)
, commands :: !(M .Map String (WMCommand ()))
, editCommands :: !(M .Map (KeyMask ,KeySym) (EditCommand CommandResult))
, overlayBorderWidth :: !Dimension
, overlayPadding :: !(Dimension,Dimension)
}

The WMSetup data structure primarily contains information that is immutable
throughout the entire execution of Mousetoxin, namely the connection to the X11
server, and the root window of the screen (implying that we support only a single
screen per server). We also store the user configuration here. Despite the fact that
it is possible for the configuration to change, such changes are rare and only happen
between commands.

data WMSetup = WMSetup
{display :: Display
, rootW :: !Window
, overlayWindow :: !Window
, gcontext :: !GC
, config :: WMConfig
}

3.4 The WM Monad

All Mousetoxin commands execute in the WM monad, which incorporates error
signalling, a read-only WMSetup, a mutable WMState, and finally wraps around
the IO monad, as communication with the X-server is an inherently impure I/O op-
eration. Note that a great number of typeclass instances are derived - while Haskell
98 supports only a small, predefined set (Eq , Ord , Enum, Bounded , Show , Read),
the Glasgow Haskell extension GeneralizedNewtypeDeriving allows derivation of
even user-defined classes. Additionally, we shall later see that it is convenient to
define special-purpose monads that wrap around WM , yet still occasionally have
to perform WM operations. Hence, we define the MonadWM typeclass and the
liftWM method for lifting WM operations, exactly the same way liftIO does.

class (Monad m)⇒ MonadWM m where
liftWM :: WM a → m a

newtype WM a = WM (ErrorT String (ReaderT WMSetup (StateT WMState IO)) a)
deriving (Functor ,Monad ,MonadIO ,MonadCatchIO ,MonadState WMState,

MonadReader WMSetup,MonadError String)
runWM :: WMSetup →WMState →WM a → IO (a,WMState)
runWM c st (WM a) = do (r , s)← runStateT (runReaderT (runErrorT a) c) st

case r of
Left e → fail $ "Unhandled Mousetoxin error: "++ e
Right v → return (v , s)

CHAPTER 3. MOUSETOXIN .CORE 12

The ErrorT monad transformer is quite nifty, as it allows us to make use of
an exception-like mechanism without using IO actions. Its error information is a
simple string, and whenever an error is signalled, the end result will be that the error
message is displayed to the user in the overlay window via the message function
described in the next section.

wmError :: String →WM a
wmError = throwError

Note that we also derive WM as an instance of MonadCatchIO , yet there’s no
such monad in the constructor! MonadCatchIO is a thin wrapper that works for
any MonadIO , and which enables the use of the “generic” I/O exception handling
mechanisms defined in Control .Monad .CatchIO , which are thin wrappers around
Control .Exception. We can’t use the latter in Mousetoxin, as they assume you only
wish to protect IO actions, and not any impure monad, such as WM .

There is a single remaining problem, however. Consider the convenient func-
tion bracket , which encapsulates a common idiom in programming: acquire a re-
source, do something with it, then release it. bracket ensures that the final cleanup
step is done, even if the middle step causes an exception (in some object-oriented
imperative languages, this might be referred to as a "finally"-block). The bracket in
Control .Monad .CatchIO does not handle the fact that the WM monad has its own
pure error mechanism (from ErrorT), however, and will not run the cleanup code
if we trigger an error through wmError . Fortunately, it is easy to use the general
mechanisms to define our own bracket .

bracket :: WM a → (a →WM b)→ (a →WM c)→WM c
bracket before after thing = block $ do

a ← before
r ← unblock (thing a)

‘onException‘ after a
‘catchError ‘ λe → after a >> throwError e

after a
return r

3.5 Manipulating the window manager state

It is of great importance that we maintain the integrity of our data structures, and
to facilitate this we will ensure that all manipulation happens through a small set of
invariant-preserving functions.

Whenever we are informed about a new window, we will have to find and assign
it a number. As we prefer small numbers, this will be done by iterating upwards
from zero until we find one not already used to identify a window. We are not likely
to ever be managing a very large set of windows, so this function should remain fast.

freeWindowNum :: WM (Maybe Integer)
freeWindowNum = do

m ← gets managed
let inUse x = elem x $ M .keys m
return $ find (¬ ◦ inUse) [0 . .]

CHAPTER 3. MOUSETOXIN .CORE 13

The X server does not know about our ManagedWindow structure and will
only tell us about plain Window s. Hence, we need a function from which we can
get the ManagedWindow corresponding to a given Window (if any). We might as
well return the window number too.

managedWindow :: Window →WM (Maybe (Integer ,ManagedWindow))
managedWindow win = find ((≡) win ◦ window ◦ snd)< $ > allmanaged

where allmanaged = M .toList < $ > gets managed

A window is managed if and only if there is a ManagedWindow entry for it.

isManaged :: Window →WM Bool
isManaged = liftM isJust ◦managedWindow

A window is displayed if and only if it is present in a leaf of the frame tree.

isDisplayed :: ManagedWindow →WM Bool
isDisplayed w = elem (window w)< $ > F .toList < $ > gets frames

The withDisplay function is a small utility for making code that accesses the
display value more aesthetically pleasing.

withDisplay :: (Display →WM a)→WM a
withDisplay f = asks display >>= f

For manipulating the frame tree, we provide changeFrames . The central idea
is that we accept a pure function taking a WindowFrameTree and returning a new
WindowFrameTree, after which we communicate with the X server to implement
the changes in the tree (moving and resizing windows to their new positions), as
well as ensuring that whichever window (if any) that now occupies the focus frame
will have focus by the X server. Apart from the frame tree itself, we also pass the
path to the focus frame, and expect it to be similarly updated. This maintains the
invariant that the focus frame path at all times refers to a valid frame in the tree.

changeFrames :: ((WindowFrameTree,FrameRef)
→ (WindowFrameTree,FrameRef))
→WM ()

changeFrames f = do
oldtree ← gets frames
oldfocus ← gets focusFrame
oldfocusw ← focusWindow
let (newtree,newfocus) = f (oldtree, oldfocus)
if (validPath newfocus newtree)

then do modify (λs → s{frames = newtree
, focusFrame = newfocus })
layoutWindows oldtree newtree
newfocusw ← focusWindow
when (newfocusw 6≡ oldfocusw) $ do

maybe (return ()) lostFocus oldfocusw
setFocusWindow newfocusw

else wmError "Invalid frame reference."
where validPath p t = elem p $ leafPaths t

CHAPTER 3. MOUSETOXIN .CORE 14

When a window loses focus we store the position of the mouse cursor. When
(if) it regains focus, we will restore this saved position.

lostFocus :: ManagedWindow →WM ()
lostFocus mw = withDisplay $ λdpy → do

rootw ← asks rootW
(, , , x , y , , ,)← liftIO $ queryPointer dpy rootw
updateWindowData (window mw) $ λw →

w{pointerCoords = (fromIntegral x , fromIntegral y)}

The function layoutWindows is responsible for moving and resizing the X win-
dows in response to frame tree changes. We pass both the old and the new tree, so
that we only have to take actual changes into account.1 We also hide every window
that was visible in the old tree, but not in the new one, while indiscriminately map-
ping every window visible in the new tree. This is not a problem, as mapping is a
no-op on an already mapped window.

layoutWindows :: WindowFrameTree →WindowFrameTree →WM ()
layoutWindows from to = withDisplay $ λdpy → do

rootw ← asks rootW
wa ← liftIO $ getWindowAttributes dpy rootw
let allocs = allocateSpace to

(fromIntegral $ wa_width wa,
fromIntegral $ wa_height wa)

forM _ allocs $ λ(win, ((x , y), (w , h)))→ do
mwin ← managedWindow win
maybe (return ())

(layoutWindow (x + fromIntegral (wa_x wa),
y + fromIntegral (wa_y wa))
(w , h)) $ snd < $ >mwin

mapM _ hideWindow delta
where delta = F .toList from \\ F .toList to

Laying out a single window involves fitting it within the frame allocated to it by
Mousetoxin. While the frame itself is inflexible, we have a lot of leeway with regards
to whether or not the window takes up all the space allocated to it, a decision that
is based on the sizeHints value associated with the window.

layoutWindow :: (Position,Position)
→ (Dimension,Dimension)

1You may have noticed the somewhat unappealing use of fromIntegral in layoutWindows (and
other functions). This is necessary for converting 32-bit signed numbers from the window attributes
(the CInt type) to the 32-bit unsigned numbers we use to indicate window dimensions (the Dimension
type, which is actually a Word32). This pattern will be repeated relatively often, and we should consider
whether any bugs could be introduced this way.

In practice, we will never use unsigned values with magnitudes that cannot be represented in a signed
value of equal size, implying that unsigned to signed conversions will not result in truncation or overflow.

The safety of signed-to-unsigned conversion is not as simple, unfortunately: negative signed values do
appear, notably in window positions (a window with a negative position would be offset above or to the
left of the physical screen border), but it turns out that all our conversions involving negative numbers
are about converting CInts to Int32 s, both simple 32-bit signed integers. Whenever we convert a signed
integer to an unsigned integer, such as the expression fromIntegral $wa_width wa in changeFrames ,
we are guaranteed that the signed integer is positive; in this case because a window dimension is always
> 0.

CHAPTER 3. MOUSETOXIN .CORE 15

→ ManagedWindow
→WM ()

layoutWindow (x , y) (w , h) mwin = withDisplay $ λdpy → do
liftIO $ do moveResizeWindow dpy win x ′ y ′ w ′ h ′

mapWindow dpy win
raiseWindow dpy win
where win = window mwin

((w ′, h ′), (x ′, y ′)) = constrainSize (sizeHints mwin) ((w , h), (x , y))

We perform a little sanity-checking on the size hints so that a bad-behaved client
will not cause us to crash. When adjusting the size of a window such that it is
smaller than its enclosing frame, we have to decide how to align it relative to the
empty space. When the adjustment is caused by a maximum size or aspect ratio
limitation, it makes sense to centre the window in the frame, but when we adjust
due to size increment considerations, keeping an upper-left alignment will result in
the most aesthetic layout.

constrainSize :: SizeHints
→ ((Dimension,Dimension), (Position,Position))
→ ((Dimension,Dimension), (Position,Position))

constrainSize sh =
maybe id constrainToMax (sh_max_size sh)
◦maybe id constrainToMin (sh_min_size sh < | > sh_base_size sh)
◦maybe id constrainToAspect (sh_aspect sh)
◦maybe id constrainToInc (liftM2 (,)

(sh_resize_inc sh)
(sh_base_size sh < | > sh_min_size sh < | > Just (0, 0)))

where constrainToMax (mw ,mh)
| min mw mh > 0 = centre (min mw ,min mh)
| otherwise = id

constrainToMin (mw ,mh) = centre (max mw ,max mh)
constrainToInc ((iw , ih), (bw , bh))
| min iw ih > 0 = topleft (max bw ◦ λw → w − w ‘mod ‘ iw ,

max bh ◦ λh → h − h ‘mod ‘ ih)
| otherwise = id

constrainToAspect ((minx ,miny), (maxx ,maxy)) x@((w , h),)
| or [minx < 1,miny < 1,maxx < 1,maxy < 1] = x
| w ∗maxy > h ∗maxx = centre (const $ h ∗maxx ‘div ‘ maxy , id) x
| w ∗miny < h ∗minx = centre (id , const $ w ∗miny ‘div ‘ minx) x
| otherwise = x

centre (fw , fh) ((w , h), (x , y)) =
((fw w , fh h),

(x + (fromIntegral $ (w − fw w) ‘div ‘ 2),
y + (fromIntegral $ (h − fh h) ‘div ‘ 2)))

topleft (fw , fh) ((w , h), p) = ((fw w , fh h), p)

As a great deal of our interaction will be about changing (or removing) the
window displayed in the focus frame, we define a convenience function. We also
take care to ensure that the same window does not appear twice in the frame tree,
this is accomplished by changing the focus frame path, rather than the frame tree
itself, if we are asked to change focus to an already visible window.

CHAPTER 3. MOUSETOXIN .CORE 16

focusOnWindow :: Maybe ManagedWindow →WM ()
focusOnWindow mwin = do

ff ← gets focusFrame
fs ← gets frames
case mwin >>= findFramePath fs ◦ window of

Just path → changeFrames $ λ(t ,)→ (t , path)
Nothing → changeFrames $ (λ(t , f)→

(changeAtPath t ff $ const (Frame $ mwin >>= return ◦ window), f))

Also for convenience, we define functions to return the window, number, or
both, in the frame that has focus, if any. Note that the inner do-block in focusWindowPair
is actually in the Maybe monad.

focusWindowPair :: WM (Maybe (Integer ,ManagedWindow))
focusWindowPair = do WMState{frames = fs
, focusFrame = ff } ← get
case frameByPath fs ff of

Just win → managedWindow win
Nothing → return Nothing

focusWindowNumber :: WM (Maybe Integer)
focusWindowNumber = liftM (liftM fst) focusWindowPair
focusWindow :: WM (Maybe ManagedWindow)
focusWindow = liftM (liftM snd) focusWindowPair

Changing the focused frame is not as simple as merely changing the focusFrame
field in the WMState-structure: we also have to make sure that the input focus is
properly set.

focusOnFrame :: FrameRef →WM ()
focusOnFrame newfocus = do

modify (λs → s{focusFrame = newfocus })
setFocusWindow =<< focusWindow

Many user-commands will want to interact with the most recently accessed win-
dow not currently being displayed — the so-called other window.

otherWindow :: WM (Maybe ManagedWindow)
otherWindow = do

others ← (filterM undisplayed ◦M .elems) =<< gets managed
return $ listToMaybe $ reverse $ sortBy (comparing accessTime) others
where undisplayed :: ManagedWindow →WM Bool

undisplayed = (liftM ¬ ◦ isDisplayed)

One of the most important occurrences during the execution of Mousetoxin
will be the creation of new windows. The manageWindow function will be called
whenever a window is created. When we take over management of a new window,
we display it in the focus frame, replacing whatever was already there. Additionally,
we express to the server that we should be notified of PropertyNotify -events in the
new window - this allows us to be notified whenever window properties, such as the
window title, changes (see Section 3.7 on page 24). Mousetoxin relies on a globally
available set of keyboard commands, so we also have to grab the prefix key on the

CHAPTER 3. MOUSETOXIN .CORE 17

window, such that we, and not the window itself, will be informed whenever it is
pressed (see Section 3.7 on page 30).

manageWindow :: Window →WM ()
manageWindow w = withDisplay $ λdpy → do

num ← freeWindowNum
case num of

Just k → do
mw ← makeManagedWindow w
modify (λs → s{managed = M .insert k mw (managed s)})
liftIO $ do mapWindow dpy w

selectInput dpy w clientMask
grabKeys w
focusOnWindow $ Just mw

Nothing → wmError "could not allocate window number"
clientMask :: EventMask
clientMask = propertyChangeMask
.|. focusChangeMask

Constructing a managed window structure is a fairly mechanical process wherein
we request a few bits of information about the window. Of course, there is no guar-
antee that this data will be constant throughout the lifetime of the window, which
is why we’ll have to detect when it changes and update. This is described later on,
in Section 3.7 on page 24.

The concept of window size hinting, which we interact with through getWMNormalHints ,
is part of the ICCCM, and many windows may not implement it. Fortunately, the
X11 library interfaces seems to provide us with a set of harmless default values in
such cases.

makeManagedWindow :: Window →WM ManagedWindow
makeManagedWindow w = withDisplay $ λdpy → do

s ← getWindowName w
t ← liftIO $ getCurrentTime
h ← liftIO $ getWMNormalHints dpy w
rootw ← asks rootW
(, , , x , y , , ,)← liftIO $ queryPointer dpy rootw
return ManagedWindow{window = w
, accessTime = t
,windowWMTitle = s
, expectedUnmaps = 0
, pointerCoords = (fromIntegral x , fromIntegral y)
, sizeHints = h }

The ICCCM defines the WM_NAME property for specifying the user-visible name
of a window. We cannot expect that all windows have this property, however, in
which case we return a placeholder string. Note that we are forced to do this by way
of handling an IO exception, as even if we check whether the property exists before
calling getTextProperty , the asynchronous nature of X makes it possible that the
property has been removed by the time we actually make the call.

getWindowName :: Window →WM String
getWindowName w = withDisplay $ λdpy → liftIO $

CHAPTER 3. MOUSETOXIN .CORE 18

(peekCString =<< (liftM tp_value $ getTextProperty dpy w wM _NAME))
‘Prelude.catch‘ (const $ return "Unnamed Window")

We may sometimes need to update the information stored in a managed win-
dow; and in these cases we will usually only have a plain Window value to go by.

updateWindowData :: Window → (ManagedWindow → ManagedWindow)→WM ()
updateWindowData w f = do

ws ← gets managed
case find ((≡) w ◦ window ◦ snd) $ M .toList ws of

Just (num,mw)→ do
modify (λs → s{managed = M .insert num (f mw) ws })

Nothing → return ()

As far as the window manager state is concerned, unmanaging a window con-
sists of removing it from the list of managed windows, and possibly removing it
from the frame tree. A window can become unmanaged in many ways (the owner
unmapping it, the user asking Mousetoxin to close it), but the details of these cases
are handled in their individual implementations. As empty screen space is wasted
space, when a visible window is unmanaged, we would like another window to take
its place. For this, we select the other window, the last accessed undisplayed window.

unmanageWindow :: ManagedWindow →WM ()
unmanageWindow mwin = do

modify (λs → s{managed = M .fromList
[(k ,mwin ′) | (k ,mwin ′)← M .toList $ managed s
,mwin ′ 6≡ mwin]})

path ← liftM2 findFramePath (gets frames) $ return (window mwin)
ow ← otherWindow
when (isJust path) $

changeFrames (λ(t , f)→
(changeAtPath t (fromJust path) $ const (Frame $ window < $ > ow), f))

When Mousetoxin’s window layout changes such that some window is no longer
visible, we have to hide it. We could also leave it in place, under the assumption that
it has been hidden because some other window now obscures its place on the screen,
but it might still be visible if the new window is not perfectly rectangular, or has
transparent parts. Also, if the frame tree is changed later on, the new layout of
windows may not fully obscure a “hidden” window that takes up the entire root
window. This could be alleviated by never permitting empty frames in the frame
tree if there is an available window, but adding such an esoteric restriction due to a
technical issue would be poor design. Instead, we unmap windows that we do not
intend to be visible at the moment.

There is a subtlety with unmapping windows, however. Normally, when we
are informed that a window has been unmapped, we unmanage it, as we assume
the owner no longer intends that the user be able to interact with it. The problem
is that when we unmap a window ourselves, we will receive the same notification,
with no apparent way to distinguish between an application-initiated unmapping
and a Mousetoxin-initiated unmapping. The common hack to solve this problem
is to keep a counter of expected unmaps – we increment the counter when hiding a
window, and check it when we receive an unmap notification event. If the counter

CHAPTER 3. MOUSETOXIN .CORE 19

is zero, we unmanage the window, otherwise we decrement the counter and do
nothing else.

hideWindow :: Window →WM ()
hideWindow win = withDisplay $ λdpy → do

t ← liftIO $ getCurrentTime
updateWindowData win $
λmwin → mwin{expectedUnmaps = expectedUnmaps mwin + 1
, accessTime = t }

liftIO $ unmapWindow dpy win

Mousetoxin responds to user requests through an overlay window, a simple, un-
managed window that typically appears in a corner, and is no larger than necessary
for the information within it. For convenience and uniformity, we define a function
for mapping, resizing, and raising the overlay. X does not permit zero-dimension
windows, so we ensure that the overlay is at least a single pixel in width and height
(not counting any border). We also ensure that the overlay never starts to the left
of the physical screen: we cannot prevent an information loss if we are asked to dis-
play a wider overlay than the screen has room for, but we can at least ensure that the
starting (leftmost) information is visible, as it is usually the most important. The
withOverlay function clears any already existing graphics in the overlay window,
and it is thus not possible to use successive calls to build up an overlay window in
parts; all drawing has to be within the scope of a single call to withOverlay .

withOverlay :: (Dimension,Dimension)→ (Window →WM a)→WM a
withOverlay (width, height) f = withDisplay $ λdpy → do

border ← overlayBorderWidth < $ > asks config
let screen = defaultScreenOfDisplay dpy

swidth = widthOfScreen screen
w = max 1 $ fromIntegral width
h = max 1 $ fromIntegral height
xpos = max 0 $ fromIntegral $ swidth − width − border ∗ 2

overlay ← asks overlayWindow
liftIO $ do

setWindowBorderWidth dpy overlay border
moveResizeWindow dpy overlay xpos 0 w h
mapRaised dpy overlay
clearWindow dpy overlay
sync dpy False

f overlay

We also supply a simple function for hiding the overlay window if we desire to
get rid of it for some reason.

clearOverlay :: WM ()
clearOverlay = withDisplay $ λdpy → do

overlay ← asks overlayWindow
liftIO $ do

lowerWindow dpy overlay
moveResizeWindow dpy overlay 0 0 1 1
setWindowBorderWidth dpy overlay 0
sync dpy False

CHAPTER 3. MOUSETOXIN .CORE 20

Input focus can be directed to a managed window, or to no window (no focus to
the user, for example when we give focus to a frame that does not contain a win-
dow). A naive implementation would be to grant focus to the root window, but this
turns out to be a bad idea. Consider how keypress events work: when they fire, the
X server will create a list of all mapped windows containing the mouse pointer po-
sition, and deliver the event to the topmost window that is a child of the focus window
that a program is listening for keypress events on. As almost all programs listen
for keypresses on their own main window, which is a child of the root window,
the effective result of granting input focus to the root window is a “focus follows
mouse”-policy.

Fortunately, Mousetoxin has its own window - the overlay window, which we
normally make use of for user interaction, though it also serves as a convenient key
sink. As we control the overlay window, we can ensure that it will never react badly
to keypress events – in fact, we will never use the selectInput function to express
interest in keypress events on it. See Section 3.7 on page 24 for more details on
events and event listening.

As a basic UI principle, we also warp the pointer to the pointer coordinates of
the window at the time it was last visible.

setFocusWindow :: Maybe ManagedWindow →WM ()
setFocusWindow w = withDisplay $ λdpy →

case w of
Just (ManagedWindow{window = w ′, pointerCoords = (x , y)})→ do

rootw ← asks rootW
liftIO $ do setInputFocus dpy w ′ revertToPointerRoot 0

warpPointer dpy 0 rootw 0 0 0 0 x y
Nothing → do overlay ← asks overlayWindow

liftIO $ setInputFocus dpy overlay revertToPointerRoot 0

For easily conveying textual information to the user, we provide an Emacs-style
message function. An overlay window will pop up with the passed string, and it
will stay until dismissed. The message function should support displaying multiple
lines, and two obvious strategies suggest themselves: accept a list of strings as the
message (where each string would be interpreted as a line by itself), or accept a
string containing newline characters (’\n’ in Haskell).

We opt for the latter strategy, as the former has the problem that the passed
strings might themselves contain newline characters, and it is not obvious what to
do with them (we might use them for breaking the message into even more lines, or
just ignore them altogether). By the principle of least surprise, we choose the most
intuitive interface, even if it means the ability to handle multiple lines is no longer
directly expressed in the type signature of the function. Note that the Xlib function
drawString cannot handle newline characters on its own, and we have to break the
string into lines anyway.

drawString draws the string with the baseline at the given coordinates, so while
we advance line-by-line down the overlay, we have to subtract the descent of the
font to find the position we should actually draw at. See Figure 3.1 on the following
page for additional information about text positioning.

message :: String →WM ()
message msg = withDisplay $ λdpy → do

gc ← asks gcontext

CHAPTER 3. MOUSETOXIN .CORE 21

When computing the vertical space necessary for displaying a line of
characters in a given font, we normally do not pay attention to the
contents of the actual string. Doing so might make the line “jump”
if the content changes from having no tall characters, such as an h.
Instead, we use the sum of the maximum ascent and descent from the
baseline any string can have in the font.

fontHeight :: FontStruct → Dimension
fontHeight f = fromIntegral $

ascentFromFontStruct f
+ descentFromFontStruct f

Figure 3.1: Text height

font ← liftIO $ fontFromGC dpy gc >>= queryFont dpy
(xpad , ypad)← overlayPadding < $ > asks config
let ss = splitLines msg

width = xpad ∗ 2 + fromIntegral (foldl max 0 $ map (textWidth font) ss)
-- fromIntegral is safe because length is always >=0.

height = fontHeight font ∗ (fromIntegral ◦ length) ss + ypad ∗ 2
descent = descentFromFontStruct font
leftpad = fromIntegral xpad
toppad = fromIntegral ypad

withOverlay (width, height) $ λw → liftIO $ do
forM _ (zip ss $ map (∗fontHeight font) [1 . .]) $ λ(s, y)→ do

drawString dpy w gc leftpad (fromIntegral y − descent + toppad) s
where splitLines :: String → [String]

splitLines s = case break (≡ ’\n’) s of
(s ′, [])→ [s ′]
(s ′, : ss)→ s ′ : splitLines ss

Overlay windows are important to Mousetoxin — apart from the important
main overlay used for window listing and command input, we use temporary over-
lays for many small tasks. For example, when a frame receives focus, we show a
small overlay window within it to make it clear where the focus has gone. We desire
somewhat uniform appearance for these overlay windows, so we define the function
createOverlay . Here, we create an unmapped 1x1 window with zero border width
located in the upper left corner of the screen.

createOverlay :: Display → Screen →Window → IO Window
createOverlay dpy screen root = do

let visual = defaultVisualOfScreen screen
attrMask = cWOverrideRedirect
.|. cWBackPixel
.|. cWBorderPixel

black = blackPixelOfScreen screen
white = whitePixelOfScreen screen

allocaSetWindowAttributes $ λattrs → do
set_override_redirect attrs True

CHAPTER 3. MOUSETOXIN .CORE 22

set_background_pixel attrs white
set_border_pixel attrs black
createWindow dpy root

0 0 1 1 0 -- x, y, width, height, border
copyFromParent
inputOutput -- class
visual attrMask attrs

createMainOverlay :: Display → Screen →Window → IO Window
createMainOverlay = createOverlay

3.6 Signals and events

Mousetoxin receives input from two asynchronous sources:

• Unix signals (see Section 3.6 on the next page).

• Events from the X-server.

There are two ways of waiting for both of these occurrences at the same time:
polling and using two threads, both of which block for input. We opt for the latter
option, using a thread that does nothing but handle signals (the Haskell system
actually does this for us) and one that reads events from the connection to the X
server.

As we still wish to keep our actual logic single-threaded, we will have to make
use of an MVar to communicate with the main thread. Note that the actual MVar
will have to be stored in the WM monad, as have to create it as an actual IO oper-
ation. Short of unsafePerformIO , we cannot have global names bound to MVar s
as global names are not evaluated in the IO monad.

Communication consists of exchanging actions to be run in the WM monad.

mkSyncVar :: IO (MVar (WM ()))
mkSyncVar = newEmptyMVar

We are only interested in SIGPIPE and SIGCHLD (see), so the signal handler is
installed as follows. We ignore SIGPIPE, the signal sent when trying to write to a
dead program2, as the default response to this signal is to terminate the program,
and we don’t want to die if one of our children stop unexpectedly.

installSignalHandlers :: MonadIO m ⇒ MVar (WM ())→ m ()
installSignalHandlers var = liftIO $ do

installHandler openEndedPipe Ignore Nothing
installHandler sigCHLD (Catch $ handleSIGCHLD var) Nothing
return ()

We do not want our child processes to inherit our signal handlers (especially not
the one for SIGPIPE), so we define a function for turning them off.

uninstallSignalHandlers :: MonadIO m ⇒ m ()
uninstallSignalHandlers = liftIO $ do

2This is a simplification.

CHAPTER 3. MOUSETOXIN .CORE 23

installHandler openEndedPipe Default Nothing
installHandler sigCHLD Default Nothing
return ()

Subprocess management

Apart from being a window manager, Mousetoxin also functions as a launcher for
various programs (see the exec command in Chapter 5 on page 45). In Unix, a
child process that terminates will still be retained in the system as a zombie unless
the parent process invokes the (blocking) waitpid system call, but we really don’t
want to spawn a new thread for every child process just to call waitpid. The
solution is to establish a signal handler for SIGCHLD, which is the signal sent by the
operating system when a child process terminates. We could get rid of the zombie
processes by indicating that we wish to ignore SIGCHLD, but we can do better than
that: when the user starts a program, he might be interested in its return value (in
particular if it errors out), or perhaps just be notified that it has stopped. Hence,
we define a facility for associating a (child) process ID with an action that will be
performed when the process terminates.

We store mappings from ProcessIDs to WM actions in the childProcs field
of the window manager state. As a SIGCHLD does not tell us which process termi-
nate, we have to iterate through the entire set and check whether each is still alive,
performing the associated action if not.

reapChildren :: WM ()
reapChildren = do

children ← filter ′ check =<< gets childProcs
modify $ λs → s{childProcs = children }

where filter ′ f = liftM M .fromList ◦ filterM f ◦M .toList
check (pid , a) = do

s ← liftIO $ getProcessStatus False False pid
maybe (return True) (λs ′ → a s ′ >> return False) s

When a SIGCHLD is received we ask the main thread to call reapChildren.

handleSIGCHLD :: MVar (WM ())→ IO ()
handleSIGCHLD var = putMVar var reapChildren

As a final convenience, we define a simple interface for starting subprocesses.

spawnPID :: String →WM ProcessID
spawnPID x = liftIO ◦ forkProcess ◦ finally nullStdin $ do

createSession
uninstallSignalHandlers
executeFile "/bin/sh" False ["-c", x] Nothing

where
nullStdin = do

fd ← openFd "/dev/null" ReadOnly Nothing defaultFileFlags
dupTo fd stdInput
closeFd fd

spawnChild :: String → (ProcessStatus →WM ())→WM ()

CHAPTER 3. MOUSETOXIN .CORE 24

spawnChild x a = do
pid ← spawnPID x
modify $ λs → s{childProcs = M .insert pid a $ childProcs s }

3.7 Talking to X

The mousetoxin function serves as the starting point of the module. Connecting
to the X server is trivial (though we must be aware that the connection, as with all
network communication, can fail), and does not merit further discussion. But let
us consider our next step: in order to manage windows, Mousetoxin will need to be
informed whenever certain events happen on the X display.

Window creation and destruction: Whenever a new window is created, we must
be informed so that we can handle it appropriately (at least by adding it to our
own set of managed windows). Likewise, we must also be informed whenever
a window is destroyed. Information about window destruction is conveyed
through DestroyNotify , but we will not use the parallel CreateNotify event,
as many applications may create windows that are not going to be shown
on the screen. Instead, we shall make use of X11’s notion of mapping: a
window starts out unmapped (invisible), and the process of making a win-
dow visible on the screen is referred to as mapping it. We will listen to the
MapRequest event, so we have a chance of refusing attempts to take focus.
The UnmapNotify event is sent whenever a window is unmapped.

Change in window configuration: Many programs will attempt to change the size
or position of their root window, something that conflicts with the basic in-
tent of Mousetoxin. We shall intercept the ConfigureRequest window event
to prevent such attempted operations. The related ResizeRequest event seems
to cover a subset of the functionality provided by ConfigureRequest , and we
therefore do not need to capture it.

Mouse button presses: Whenever a mouse button is pressed, we wish to shift focus
to the layout frame containing the window receiving the mouse press event,
before passing on the event. We thus have to capture ButtonPress events. We
also opt to capture ButtonRelease events for the same reason.

Keyboard presses: As Mousetoxin is solely controlled via the keyboard, we con-
ceptually have to inspect all key input to see whether it’s part of a Mousetoxin
command invocation, before passing it on to the window that has focus. We
opt to capture only KeyPress , not KeyRelease, as we have no need of the
latter. Also, in practice, we don’t inspect all input ourselves, but rather use a
so-called passive grab in the X server, described in more detail in Section 3.7
on page 30.

Changes in window properties: A number of important values attached to win-
dows, such as their title, is defined by a window property. We must be in-
formed whenever some of these properties (again, such as the window ti-
tle) changes. The X server will convey this information to us through the
PropertyNotify event (called PropertyEvent in the Haskell Xlib wrapper).

CHAPTER 3. MOUSETOXIN .CORE 25

We can be informed of some of these events by setting an event mask for the root
window of the screen, while for others we have to set an event mask for each indi-
vidual managed window. In the former category, DestroyNotify and UnmapNotify
are associated with StructureNotifyMask ; and MapRequest and ConfigureRequest
with SubstructureRedirectMask . In the latter category, we have ButtonPress and
ButtonRelease with ButtonPressMask and ButtonReleaseMask respectively; and
finally PropertyNotify with PropertyChangeMask . These masks (as the name im-
plies) are merely bit-patterns, and we can use a standard binary or-operation to
combine them. Only a single client can select for SubstructureRedirectMask , so if
an existing window manager is already running, we will receive an error.

rootMask :: EventMask
rootMask = substructureNotifyMask
.|. substructureRedirectMask
.|. propertyChangeMask
.|. buttonPressMask

The code for opening and initialising the display is straightforward, though ob-
scured by the fact that selectInput makes use of the Xlib error handling mechanism,
while openDisplay throws normal Haskell IO exceptions. At this point, any error
causes a catastrophic exit.

setupDisplay :: String → IO Display
setupDisplay dstr = do

dpy ← openDisplay dstr ‘Prelude.catch‘ λ → do
error $ "Cannot open display ’"++ dstr ++ "’."

let dflt = defaultScreen dpy
rootw ← rootWindow dpy dflt
setErrorHandler $ error "Another window manager is already running."
selectInput dpy rootw rootMask
sync dpy False
return dpy

The function mousetoxin uses setupDisplay to connect to the X server, after
which it sets up an appropriate environment for executing the WM monad, and
starts the main event-handling loop. Almost every function run by Mousetoxin
will be in response to an event handled by this loop, with the sole exception of
asynchronous Unix signals. We have to select KeyPress events on the overlay win-
dow (via KeyPressMask) as much of our eventual input handling will be done by
giving the overlay window focus.

We disable the Xlib error handling mechanism, as we can ensure there are no
real errors on our own, and we would otherwise crash hard with a BadWindow
error when unmapping a destroyed window.

mousetoxin :: WMConfig → IO ()
mousetoxin conf = do

dpy ← setupDisplay $ displayStr conf
let screen = defaultScreenOfDisplay dpy

rootw = rootWindowOfScreen screen
overlay ← createMainOverlay dpy screen rootw
selectInput dpy overlay keyPressMask

CHAPTER 3. MOUSETOXIN .CORE 26

xSetErrorHandler
mapWindow dpy overlay
gc ← createGC dpy rootw
setFont dpy gc =<< fontFromFontStruct < $ > loadQueryFont dpy "9x15bold"
let cf = WMSetup

{display = dpy
, rootW = rootw
, overlayWindow = overlay
, gcontext = gc
, config = conf
}

st = WMState
{managed = M .empty
, frames = Frame Nothing
, focusFrame = []
, childProcs = M .empty
}

runWM cf st $ do grabKeys rootw
setFocusWindow Nothing
scanWindows
wmMainLoop

return ()

The main loop of Mousetoxin consists of continuously taking and executing
WM actions from an MVar that is in return filled by signal handlers and a thread
that receives events from the X-server.

The only slightly tricky thing is this latter thread, as we cannot naively call
nextEvent to block while waiting for input from the server. It appears that nextEvent
applies a signal mask, meaning that our signal handlers will be delayed until after the
next event has been received from the server. Hence, we only call nextEvent if we
have made sure that there are events already in the queue (checked with pending). If
there are no such events, we do our own blocking on the file descriptor representing
our connection to the server, as that will not cause trouble with respect to signals.

wmMainLoop :: WM ()
wmMainLoop = withDisplay $ λdpy → do

var ← liftIO $ mkSyncVar
let getAndHandle = do -- Loop body.

(join $ liftIO (takeMVar var))
‘catchError ‘ λerr →

when (err 6≡ "") $ message err
liftIO $ sync dpy False

liftIO $ forkIO $ allocaXEvent $ λev → forever $ do
liftIO $ sync dpy False
cnt ← pending dpy
when (cnt ≡ 0) $

threadWaitRead $ Fd $ connectionNumber dpy
e ← nextEvent dpy ev >> getEvent ev
putMVar var $ handleEvent e

installSignalHandlers var

CHAPTER 3. MOUSETOXIN .CORE 27

message $ "Welcome to Mousetoxin!"
forever getAndHandle

When we start running, any number of windows may already be children of the
root window. We should manage all these as if they had been newly created.

scanWindows :: WM ()
scanWindows = withDisplay $ λdpy → do

rootw ← asks rootW
(, ,wins)← liftIO $ queryTree dpy rootw
mapM _ manageWindow =<< filterM ok wins
where ok win = withDisplay $ λdpy → do

wa ← liftIO $ getWindowAttributes dpy win
a ← liftIO $ internAtom dpy "WM_STATE" False
p ← liftIO $ getWindowProperty32 dpy a win
let ic = case p of

Just (3 :)→ True
→ False

return $ ¬ (wa_override_redirect wa)
∧ (wa_map_state wa ≡ waIsViewable ∨ ic)

We come now to the handleEvent function, which takes an Event and responds
appropriately.

MapRequestEvent is sent for newly created children of the root window ("newly
started programs"), or any other unmapped child of the root, when it is mapped.
Some windows, those that have their override_redirect bit set, do not send requests
when they are mapped, but just map immediately. Incidentally, windows that are
override_redirect are also the only windows that we should never manage. Hence,
if we receive a MapRequestEvent for a window that we do not currently manage,
we should start managing it. We may occasionally receive mapping requests for
windows that we do manage, but that we have unmapped to hide them. These re-
quests are ignored, effectively meaning that it is impossible for an existing window
to steal focus. Only the creation of new windows, or user action, can change which
windows appear on the screen.

Note that MapRequestEvents are not generated when we ourselves use the
mapWindow -function, only when other programs try to map a window.

handleEvent :: Event →WM ()
handleEvent (MapRequestEvent{ev_window = w }) = do

client ← isManaged w
when (¬ client) $

manageWindow w

An application may unmap its windows at any time for any reason, but Mouse-
toxin will always respond by unmanaging the window, removing all stored infor-
mation, and freeing up its window number. If the application decides to remap the
window later on, it will be assigned a new window number. This policy means
we do not have to care about window creation: as a window manager, we are con-
cerned with windows that applications intend to be visible (mapped), not any child
window of the root that may be created for utility reasons.

Not all UnmapEvents are caused by the application; Mousetoxin unmaps win-
dows that are not visible in the current frame tree. We keep track of this in the

CHAPTER 3. MOUSETOXIN .CORE 28

expectedUnmaps field of the ManagedWindow structure, and do not unmanage
the window if the unmapping was requested by Mousetoxin.

handleEvent (UnmapEvent{ev_window = win }) = do
mwin ← managedWindow win
case mwin of

Just (,mwin ′@(ManagedWindow{expectedUnmaps = 0}))→
-- Unexpected unmap, so unmanage.

unmanageWindow mwin ′

Just (,)→ updateWindowData win $ λmwin ′ →
-- This unmap was Mousetoxin-initiated, so just reduce counter.

mwin ′{expectedUnmaps = expectedUnmaps mwin ′ − 1}
Nothing → return ()

While window creation is not our concern, we still have to react to window
destruction, as they do not cause an unmap event to be sent. A window being
destroyed means we have to unmanage it immediately.

handleEvent (DestroyWindowEvent{ev_window = win }) = do
mwin ← managedWindow win
fromMaybe (return ()) (unmanageWindow ◦ snd < $ >mwin)

ConfigureRequestEvents are sent in a similar fashion to MapRequestEvents,
when programs that are not us try to change the configuration (size, position, bor-
der, etc) of a window. Any window managed by us will already have its proper
position (or get it soon) as determined by layoutWindows , but some programs may
assume that their configure requests are granted, which may result in visual artifacts.
To ensure that windows know their proper size, we make sure that they receive a
reconfigure event containing their actual dimensions. We assume that non-managed
windows have a good reason for being so, and grant their configuration request.

handleEvent e@(ConfigureRequestEvent{ev_window = w }) = withDisplay $ λdpy → do
client ← managedWindow w
case client of

Nothing → liftIO $
configureWindow dpy w (ev_value_mask e) $ WindowChanges
{wc_x = ev_x e
,wc_y = ev_y e
,wc_width = ev_width e
,wc_height = ev_height e
,wc_border_width = 0
,wc_sibling = ev_above e
,wc_stack_mode = ev_detail e }

Just → do
wa ← liftIO $ getWindowAttributes dpy w
liftIO $ configureWindow dpy w mask $ WindowChanges
{wc_x = ev_x e
,wc_y = ev_y e
,wc_width = ev_width e
,wc_height = ev_height e
,wc_border_width = 0

CHAPTER 3. MOUSETOXIN .CORE 29

,wc_sibling = ev_above e
,wc_stack_mode = ev_detail e }

liftIO $ sync dpy False
changeFrames id

liftIO $ sync dpy False
where mask = ev_value_mask e .&. (1 .|. 2 .|. 4 .|. 8 .|. 16)

handleEvent e@(MappingNotifyEvent{ev_window = win })
| ev_request e ≡ mappingKeyboard = do

rootw ← asks rootW
client ← isManaged win
liftIO $ refreshKeyboardMapping e
when (client ∨ win ≡ rootw) $ grabKeys win

For some reason the FocusIn and FocusOut events lack their own value con-
structors in the Xlib binding, and are instead represented as AnyEvents with spe-
cific event types set. They have no data payload, so it does not matter. A focus
change may mean that we have lost our passive keyboard grab, which we must
then reestablish to prevent the user from losing the ability to communicate with
Mousetoxin.

handleEvent (AnyEvent{ev_window = win, ev_event_type = etype })
| etype ≡ focusIn ∧ etype ≡ focusOut = do

client ← isManaged win
when (client) $ grabKeys win

When we receive a keypress, we check whether it is the prefix key, and if so,
ask for another key for the actual command. We will only receive KeyEvents for
the keys that we have explicitly grabbed, and we don’t technically have to check
whether the key is the prefix key if that’s all we grab. Yet, there is no harm in being
cautious.

handleEvent (KeyEvent{ev_event_type = t , ev_state = m, ev_keycode = code })
| t ≡ keyPress = withDisplay $ λdpy → do

s ← liftIO $ keycodeToKeysym dpy code 0
prefix ← liftM prefixKey $ asks config
when ((cleanMask m, s) ≡ prefix) dispatchCommand

handleEvent (PropertyEvent{ev_window = w , ev_atom = atom })
| atom ≡ wM _NAME = do

s ← getWindowName w
updateWindowData w (λmw → mw{windowWMTitle = s })
| atom ≡ wM _HINTS = withDisplay $ λdpy → do

h ← liftIO $ getWMNormalHints dpy w
updateWindowData w (λmw → mw{sizeHints = h })

With the masks we have chosen, we will also receive some extra events that
we do not care about, such as ConfigureEvents for our managed windows and
KeyEvents for key releases. We will silently ignore these.

handleEvent = return ()

CHAPTER 3. MOUSETOXIN .CORE 30

Keymasks (information about the modifiers active when a key is
pressed) can be quite complicated due to the device-independence of
the X11 protocol. We define a function to filter away modifiers that
we are not interested in.

cleanMask :: KeyMask → KeyMask
cleanMask km = complement (numLockMask
.|. lockMask) .&. km
where numLockMask :: KeyMask

numLockMask = mod2Mask

Figure 3.2: Keymask manipulation

Input handling

Keyboard input is delivered to Mousetoxin in the form of KeyEvent values. The
two most important values contained in the event is the keycode, a device-specific
value identifying the pressed key, and the keymask, a device-independent value in-
dicating which modifiers (such as Shift, CTRL, or Meta/Alt) were active when the
key was pressed. We can convert keycodes to keysyms, device-independent key iden-
tifiers.

The foundation on which the entire Mousetoxin input mechanism is built on
is the passive grab we establish on all managed windows. All keypresses will be
delivered normally to the window that has focus, except for our prefix key. Thanks
to the passive grab, it will be delivered to Mousetoxin as a KeyEvent .

grabKeys :: Window →WM ()
grabKeys win = do

WMSetup{display = dpy , config = cfg } ← ask
let (mask , sym) = prefixKey cfg
liftIO $ ungrabKey dpy anyKey anyModifier win
kc ← liftIO $ keysymToKeycode dpy sym
when (kc 6≡ ’\0’) $ liftIO $ grabKey dpy kc mask win True grabModeAsync grabModeAsync

Whenever we ask the user for keyboard input, we have to grab global keyboard
focus in the X server. As it turns out, what we really want in those cases is to do a
general “input grab” (though less severe than a real server grab, which stops all event
processing) where the user cannot interact with any program but Mousetoxin. It is
important that we make to make sure that no error or IO exception can cause us to
skip releasing the focus, as the X server could otherwise be left in a confusing state.
We pass the overlay window to grabKeyboard , which has the effect of causing all
keyboard events to be reported with respect to the overlay. This is the reason we
had to select KeyPress events on the overlay window during initialisation.

withGrabbedKeyboard :: WM a →WM a
withGrabbedKeyboard body = withDisplay $ λdpy → do

WMSetup{overlayWindow = overlay } ← ask
cursor ← liftIO $ createFontCursor dpy xC _icon
let grabkey = do r ← liftIO $ grabKeyboard dpy overlay False

CHAPTER 3. MOUSETOXIN .CORE 31

grabModeSync grabModeAsync
currentTime
when (r 6≡ grabSuccess) $

wmError $ "Could not obtain keyboard grab."++ show r
ungrabkey = liftIO $ ungrabKeyboard dpy currentTime
grabptr = do r ← liftIO $ grabPointer dpy overlay True 0

grabModeAsync grabModeAsync
none cursor currentTime
when (r 6≡ grabSuccess) $

wmError "Could not obtain mouse grab."
ungrabptr = liftIO $ ungrabPointer dpy currentTime

bracket grabkey (const ungrabkey) $ λ →
bracket grabptr (const ungrabptr) (const body)

As Mousetoxin’s user interface is wholly keyboard-based, the fundamental in-
teraction with the user is through reading keyboard input. The function readKey
encapsulates the logic of requesting a single keystroke from the user. We are only
interested in real keys: we are not interested in whether the user presses a modifier
key; indeed, it would be very poor UI if the user could not even press the Shift
or Control key without it being treated as a command invocation by Mousetoxin.
Therefore, we loop until we receive a key that is not a modifier (as determined by
the Xlib function isModifierKey).

readKey :: WM ((KeySym,KeyMask),String)
readKey = withDisplay $ λdpy → do

(s,m)← liftIO $ allocaXEvent $ λev → do
let readKey ′ = do

maskEvent dpy keyPressMask ev
res ← keysymFromEvent ev
case res of

Just ((s,m), str)→ if (isModifierKey s)
then readKey ′

else return ((s,m), str)
Nothing → readKey ′

readKey ′

return (s,m)

The function for extracting keysyms from keypress events is somewhat ugly,
though unfortunately more due to design flaws in the Xlib library, than due to any
inherent complexity in the process. We extract an Event value from the XEventPtr
to get at the keymask and keycode of the event, yet we have to cast the XEventPtr
to an XKeyEventPtr in order to use lookupString to extract a keysym from the
event. Alternatively, we could use keycodeToKeysym directly, but we would have
to implement the index logic (which is used to switch between the keysym maps
based on whether modifier keys like Shift are pressed) ourselves. We sacrifice the
aesthetics of our code in order to make use of Xlib’s hopefully correct implementa-
tion of modifier logic. The returned string is the character sequence (if any) corre-
sponding to the key, for example "a" for the a key.

keysymFromEvent :: XEventPtr → IO (Maybe ((KeySym,KeyMask),String))
keysymFromEvent ev = do

CHAPTER 3. MOUSETOXIN .CORE 32

et ← get_EventType ev
if (et ≡ keyPress) then do

e ← getEvent ev
case e of

(KeyEvent{ev_state = m })
→ do (ks, str)← lookupString $ asKeyEvent ev
case ks of

Just s → do
return $ Just

(if (m .&. shiftMask 6≡ 0)
then (s, cleanMask m ‘xor ‘ shiftMask)
else (s, cleanMask m),
str)

Nothing → return Nothing
→ return Nothing -- Should never happen.

else return Nothing

Let us now define a function that does the following.

1. Reading a keypress from the keyboard.

2. Checking whether said key is bound to a command string.

3. If so, evaluate that command string.

dispatchCommand :: WM ()
dispatchCommand = do

WMConfig{keyBindings = bindings } ← asks config
clearOverlay
((s,m),)← withGrabbedKeyboard readKey
case M .lookup (m, s) bindings of

Just cmd → evalCmdString cmd
Nothing → message $ "Key ’"++ keysymToString s ++ "’ is not bound to a command."

3.8 Command execution

Commands are the central user-oriented mechanism for interacting with Mouse-
toxin and are invoked through command strings. Commands can take any number
of parameters, and all (or some) may be provided in the command string that in-
voked the command. Any unsupplied parameters must be obtained through inter-
active querying of the user. We would like to hide this complexity from command
definitions, making it completely transparent whether a parameter was provided in
the command string or through an interactive query.

To accomplish this, commands are represented via the WMCommand monad,
which wraps a String state around an inner WM monad. This string state contains
the parts of the command string following the actual command; completely un-
processed, such that the command can implement whatever syntax is appropriate.
For the vast majority of commands, this will be a sequence of whitespace-separated
tokens. Indeed, the reason for this design is that we can write monadic actions

CHAPTER 3. MOUSETOXIN .CORE 33

for retrieving argument values that inspect (and consume) the string state, or in-
teractively query the user if the string is empty. A lifting function, liftWM , is
provided for running code the wrapped WM monad. This could also have been im-
plemented by making the functions in Section 3.5 on page 12 operate on a monad
transformer class, and making WMCommand an instance of that class, but I judge
that liftWM is a more lightweight solution for our purposes. Indeed, it is likely
that most commands will merely use WMCommand for the previously mentioned
argument processing facilities, then perform most of their logic in a lifted monadic
WM action.

newtype WMCommand a = WMCommand (StateT String WM a)
deriving (Functor ,Monad ,MonadIO ,MonadState String ,

MonadError String)
instance MonadWM WMCommand where

liftWM a = WMCommand (lift a)
runWMCommand :: String →WMCommand a →WM a
runWMCommand s (WMCommand a) = runStateT a s >>= return ◦ fst
cmdError :: MonadWM m ⇒ String → m a
cmdError = liftWM ◦ wmError

The format of a command string is exceedingly simple: the command consists of
all characters up to the first space character, the arguments consist of all remaining
characters (including this first space). A command must contain at least a single
character; therefore the empty string is not a valid command string, nor is any
string starting with a space character.

evalCmdString :: String →WM ()
evalCmdString s = do

WMConfig{commands = cmds } ← asks config
let (cmd , args) = break (≡ ’ ’) s
when (cmd ≡ "") $ wmError "No command provided."
case M .lookup cmd cmds of

Just cmd ′ → do
liftIO $ putStrLn $ "!!!!!!!!!!!running command "++ cmd
runWMCommand args cmd ′

Nothing → wmError $ "Unknown command ’"++ cmd ++ "’."

Interactive Editing

We will shortly begin to discuss code that performs an interactive dialogue with the
user by prompting for input. Before that is possible, however, we will have to define
at least the programming interface with which the input editor will expose itself to
the world. We will not descripe the actual implementation, instead delegating this
to Section ?? on page ??.

The Mousetoxin input editor is the program responsible for providing a user
with a way to enter and edit single-line text. It provides a simple Emacs-like user
interface to the user and supports programmatic input completion. In the follow-
ing, we will use input buffer (or just buffer) to refer to the actual text being edited,
and editing point to the position in the input buffer at which further character in-

CHAPTER 3. MOUSETOXIN .CORE 34

sertions will take place. The term editing point (or just point) comes from Emacs,
and is perhaps more commonly known as the caret or editing cursor.

The main function has the following type.

getInput :: Window
→ (CompleteRequest →WM CompleteResponse)
→ (FinishRequest →WM (FinishResponse a))
→WM (EditResult a)

The specified window is used for displaying the state of the editing process (that
is, drawing the input buffer and cursor position). Two functions are provided to
support tab-completion and final transformation of the input into a real value.

A completion request simply contains the string of text to be completed.

type CompleteRequest = String

The completion function should return a list of possible completions based on
the input string. The completions should be complete, that is, start with the text
passed in via the CompleteRequest . This means we don’t have to spend time cutting
off prefixes, but can just replace whatever part of the input buffer we asked to be
completed.

type CompleteResponse = [String]

A finish request happens when the user presses the Enter key (or equivalent),
signifying that the input is complete. We pass the entire contents of the input buffer
as a string.

type FinishRequest = String

We must try to transform the text input (for example "42") to a value of the
desired type (for example an Int). If this is not possible, such as if the user has
entered "foo" when we asked for an integer, we will return a Left value containing
an explanation of what is wrong. Otherwise, we return the value wrapped in Right .

type FinishResponse a = Either String a

An edit result is either a value (as given by the FinishResponse), or Nothing . We
do not distinguish between aborted editing sessions and input that merely could not
be transformed into a value of the desired type, as the latter case is signalled through
errors.

type EditResult a = Maybe a

The CommandArg typeclass

As previously mentioned, we would like command parameter acquisition to be
transparent, whether it involves reading from the command string or performing
an interactive query. The linchpin in this scheme is the CommandArg typeclass,
which defines a method accept that returns a value of the desired type wrapped in
WMCommand . The full story is a little more complicated, however. Consider a

CHAPTER 3. MOUSETOXIN .CORE 35

command that requires as input the number of a managed window: the value has
the Haskell type Integer , but this type does not fully encompass the constraints
that must be put on the input. Specifically, we must have that there is a managed
window with a window number that corresponds to the returned integer. For
this reason, accept takes as argument a presentation type, a Haskell value enforcing
additional constraints on the value. The presentation type can also include other
meta-information about how to retrieve the value, such as the prompt to be used in
an interactive call. This class definition makes use of multi-parameter type-classes,
an extension that is not part of Haskell 98.

class CommandArg pt a where
accept :: pt →WMCommand a

Most, if not all, CommandArg instances will work by trying to consume some
part of the argument string, and putting the remainder back when done. Subtle and
dangerous bugs can appear if the accept method does not remove its consumed char-
acters from the argument string, so we provide a function that uses type-checking
to force us to supply a new remainder.

consumingArgs :: (String →WMCommand (a,String))→WMCommand a
consumingArgs f = do

(r , s)← f =<< get
put s
return r

But we can do even better. If we take a high-level view of what we need to
accomplish, we find that we need to obtain a string, check that it satisfies some
property (like forming a numeral), and map the string to a value. We should abstract
away the difference between extracting a string from the input string and asking the
user for a string in an interactive query. The only complication is that we may wish
to provide a list of possible valid values for interactive editing (to accommodate tab-
completion), something that does not make sense when the input comes from the
command string. On the other hand, supplying this list does no harm either. As
we are already doing magic for the benefit of the common case, we also opt to strip
leading leading whitespace if the argument comes from the command string.

accepting :: String
→ (CompleteRequest →WM CompleteResponse)
→ (FinishRequest →WM (FinishResponse a))
→WMCommand a

accepting pstr compl finish = do
consumingArgs $ λs →

case break (≡ ’\n’) s of
("",)→ liftWM $ do -- Command string is empty, do interaction.

result ← stdGetInput pstr compl finish
case result of

Nothing → wmError ""
Just v → return (v , "")

(word , rest)→ liftWM $ do -- Get line from command string.
fin ← finish $ dropWhile (≡ ’ ’) word
val ← either wmError return fin
return (val , drop 1 rest)

CHAPTER 3. MOUSETOXIN .CORE 36

We make the assumption that newlines in a command string separate command
arguments. It is possible to define CommandArg instances that do not follow this
rule, but they will not be able to use accepting . Also note that interactive editing is
inherently single-line, so we are guaranteed that we’ll never be working with strings
corresponding to argument commands containing newline characters, at least not if
we use accepting .

As a concrete example of the CommandArg typeclass, let us define an instance
of CommandArg for reading plain strings, with no constraints on their content.
We will read up to the first newline character or the end of the string, whichever
comes first. Our presentation type is a value of type PlainString , which contains
no other information than the prompt to be used for interaction with the user.

data PlainString = String String
instance CommandArg PlainString String where

accept (String pstr) = do
consumingArgs $ λs →

case break (≡ ’\n’) s of
("",)→ liftWM $ do

result ← stdGetInput pstr (const $ return []) (return ◦ Right)
case result of

Nothing → wmError ""
Just v → return (v , "")

(word , rest)→ return (word , (drop 1 rest))

Or alternatively, through the use of accepting :

data PlainString = String String
instance CommandArg PlainString String where

accept (String pstr) =
accepting pstr (const $ return []) (return ◦ Right)

We can now request string input by an expression such as accept (String "Enter string: "),
which has the type WMCommand String .

We define an instance for reading plain integers that makes use of the CommandArg PlainString String
instance above.

data PlainInteger = Integer String
instance CommandArg PlainInteger Integer where

accept (Integer pstr) = cmdRead =<< accept (String pstr)

We do not wish to use the default read function from the Haskell Prelude, as it
throws IO errors if the input is malformed. As the input is from the user, syntax
errors should be expected and handled gracefully. We use a wrapper around the
reads function to accomplish this, but we have to filter away partial results where
less than the entire string is consumed: in order to make sure that Mousetoxin will
never silently assign an interpretation to malformed input, we will not partial input.

safeRead :: Read a ⇒ String → Either String a
safeRead s = case r s of

Nothing → Left $ "Invalid input ’"++ s ++ "’."

CHAPTER 3. MOUSETOXIN .CORE 37

Just v → Right v
where r = fmap fst ◦ listToMaybe ◦ filter (null ◦ snd) ◦ reads

cmdRead :: Read a ⇒ String →WMCommand a
cmdRead s = either cmdError return $ safeRead s

Our separation between presentation types and returned Haskell values has a
subtle and intriguing benefit, namely that we can define multiple CommandArg
instances for the same presentation type that have different return values for their
accept method. Consider the task of asking the user for a window: sometimes we
are interested in a window number, sometimes a ManagedWindow value. Logi-
cally, however, the sets of valid values are isomorphic, so we need only a single
presentation type.

Our presentation type is simple, being just a data constructor with a String for
the interactive prompt.

data WMWindow = Window String

An instance that yields (Integer ,ManagedWindow) values (window numbers
paired with their window structures) will be shown next. It works by creating
a map from strings of window numbers and window titles (preferring numbers
in case of collisions) to pairs of window numbers and ManagedWindow s. The
valid completions are the window numbers of all active windows, and finishing is a
matter of using the input string to perform a lookup on the map.

instance CommandArg WMWindow (Integer ,ManagedWindow) where
accept (Window pstr) = do

ws ← liftWM $ gets managed
let check str = maybe (err str) Right $ M .lookup str allcompls

err str = Left $ "unknown window ’"++ str ++ "’"
namecompls = M .foldWithKey

(λnum mwin → M .insert (windowWMTitle mwin) (num,mwin))
M .empty ws

numcompls = M .foldWithKey
(λnum mwin → M .insert (show num) (num,mwin))
M .empty ws

allcompls = M .union numcompls namecompls
compl str = filter (isPrefixOf str) $ M .keys numcompls

accepting pstr (return ◦ compl) (return ◦ check)

We can easily use the CommandArg WMWindow instance for (Integer ,ManagedWindow)s
to define instances for Integers and ManagedWindow s. Unfortunately, we have to
use explicit type annotations, as there is no way Haskell can otherwise choose a
CommandArg instance, as one type variable in the returned tuple will always be
free.

instance CommandArg WMWindow Integer where
accept w = fst < $ > (accept w :: WMCommand (Integer ,ManagedWindow))

instance CommandArg WMWindow ManagedWindow where
accept w = snd < $ > (accept w :: WMCommand (Integer ,ManagedWindow))

The appropriate instance for a given use of these instances can be automatically
selected by the Haskell type inference algorithm, however.

CHAPTER 3. MOUSETOXIN .CORE 38

3.9 The Input Editor

This section will discuss the implementation details of the input editor whose inter-
face was described in Section 3.8 on page 33.

The mutable input editor state is given by a data structure in which we store
the input buffer, the clipboard, and the editing point. With the following represen-
tation, the editing point may end up negative or larger than the size of the input
buffer, in which case it will be constrained to the size of the input buffer. For sup-
porting our completion UI, we (may) keep a list of the possible completions that
are being iterated through. The idea is that we when first embarking upon a com-
pletion process, we complete to the first possible completion. On every subsequent
(immediate) press of the completion key, we iterate through the list.

data EditorState = EditorState
{inputBuffer :: String
, clipboard :: String
, editingPoint :: Int
, completing :: Maybe [String]
}

blankEditorState :: EditorState
blankEditorState = EditorState
{inputBuffer = ""
, clipboard = ""
, editingPoint = 0
, completing = Nothing
}

We also maintain a read-only editor context containing the prompt and the func-
tion for finding completions.

data EditorContext = EditorContext
{prompt :: String
, completer :: CompleteRequest →WM CompleteResponse
}

blankEditorContext :: EditorContext
blankEditorContext = EditorContext
{prompt = ""
, completer = (const $ return [])
}

The same way we execute window manager commands in the WMCommand
monad, we wish to provide a monad for input editor commands. In this case,
the cause is not the need to support different methods of input acquisition, but
rather the desire to avoid passing the editor state and the function for completion
around. And more importantly, we do not wish to change every single input editor
command if we decide to add a new piece of read-only data to the input editing
context.

newtype EditCommand a = EditCommand
(ReaderT EditorContext (StateT EditorState WM) a)
deriving (Functor ,Monad ,MonadIO ,MonadState EditorState,

CHAPTER 3. MOUSETOXIN .CORE 39

MonadReader EditorContext)
instance MonadWM EditCommand where

liftWM a = EditCommand (lift (lift a))
runEditCommand :: EditorState
→ EditorContext
→ EditCommand a
→WM (a,EditorState)

runEditCommand s c (EditCommand a) = runStateT (runReaderT a c) s

Any command that executes must yield a value describing its overall change to
the editing process, that is, changes that cannot be encapsulated merely by changing
values in the EditorState structure). Five outcomes are possible:

• A command may fail because it is unable to execute. For example, a tab-
completion command may find no valid completions, or a command to move
the editing point forward by a character may find itself already at the end of
the input buffer.

• A command may finish the editing session, starting the procedure of turning
the textual input into a value of the desired type.

• The editing session can at any time be prematurely aborted, resulting in no
value.

• A command may engage in a completion session. Whenever a command that
does not engage in a completion session finishes, the completing field of the
EditorState will be cleared.

• The majority of commands, such as moving the cursor or inserting a charac-
ter, will have no particular effect on the overall editing session.

data CommandResult = Fail String
| Done
| Abort
| No_Op
| Completion

We can now define the getInput function. For convenience, it just wraps around
a function that starts an editing session based on an already existing editor state.

getInput :: Window
→ (CompleteRequest →WM CompleteResponse)
→ (FinishRequest →WM (FinishResponse a))
→WM (EditResult a)

getInput win comp = doGetInput blankEditorState context win
where context = blankEditorContext{completer = comp}

An input editing sessions starts by setting the position and dimensions of the
indicated window to fit the prompt and starting input buffer contents. After this,
we give the window a border, make it visible, draw its contents, and then start
our main command reading loop, wherein we maintain an active keyboard grab.

CHAPTER 3. MOUSETOXIN .CORE 40

This also means that the state of the X server will not change while we are doing
interactive editing: no new windows will pop up, for example.

doGetInput :: EditorState
→ EditorContext
→Window
→ (FinishRequest →WM (FinishResponse a))
→WM (EditResult a)

doGetInput state cont win fin = withDisplay $ λdpy → do
border ← overlayBorderWidth < $ > asks config
fixEditorPosition state cont win
liftIO $ do

setWindowBorderWidth dpy win border
mapRaised dpy win

redrawEditor state cont win
withGrabbedKeyboard $

doEditorCommands state cont win fin

We can also define a simple utility function for the common case where we use
the overlay window, a prompt, and clear the overlay window after use.

stdGetInput :: String
→ (CompleteRequest →WM CompleteResponse)
→ (FinishRequest →WM (FinishResponse a))
→WM (EditResult a)

stdGetInput pstr comp fin = do
ow ← asks overlayWindow
r ← doGetInput blankEditorState context ow fin
clearOverlay
return r
where context = blankEditorContext{prompt = pstr
, completer = comp}

Our command execution loop is mostly straightforward, consisting of the fol-
lowing sequence of steps:

1. Fetch keyboard invocation from user.

2. Look up command associated with invocation. If no such binding exists, go
to 1.

3. Execute associated command.

4. Take a decision based on the command result:

Done: Terminate editing yielding the result of passing the final input buffer
to the finisher.

Abort : Terminate editing, Returning Nothing .

Completion: Go to 1.

Otherwise, go to 1 with the completion field of the editor state cleared.

CHAPTER 3. MOUSETOXIN .CORE 41

Additionally, we make sure that the position and visual representation of the
editor state is up-to-date after every command invocation that does not terminate
the editing session.

A final complication lies in our handling of unbound keys where no modifier
keys are set – these are considered to be literal input, plain characters entered on the
keyboard that should be inserted into the input buffer as a string.

doEditorCommands :: EditorState
→ EditorContext
→Window
→ (FinishRequest →WM (FinishResponse a))
→WM (EditResult a)

doEditorCommands state cont win finisher = do
k@((s,m),)← readKey
cmd ← fromMaybe (noBinding k)
< $ >M .lookup (m, s)< $ > editCommands < $ > asks config

(result , state ′)← runEditCommand state cont cmd
case result of

Done → do v ← finisher $ inputBuffer state ′

either wmError (return ◦ Just) v
Abort → return Nothing
Completion → continue state ′

Fail → continue state ′{completing = Nothing }
→ continue state ′{completing = Nothing }

where noBinding ((,m), str) = if (m ≡ 0)
then do modify $ strInsert str

return No_Op
else return $ Fail "Unbound invocation"
strInsert str s = s{inputBuffer = take p b ++ str ++ drop p b
, editingPoint = p + length str }
where p = editingPoint s

b = inputBuffer s
continue state ′ = do

fixEditorPosition state ′ cont win
redrawEditor state ′ cont win
doEditorCommands state ′ cont win finisher

Our editor drawing algorithm is extremely simple, as we do not expect to ever
have large amounts of text (indeed, our editor is single-line). We merely clear the
entire window and draw the prompt and input buffer. The prompt is drawn by
creating a graphics context that does an exclusive-or operation on the colour of the
pixels it touches.

redrawEditor :: EditorState → EditorContext →Window →WM ()
redrawEditor state cont win = withDisplay $ λdpy → do

gc ← asks gcontext
font ← liftIO $ fontFromGC dpy gc >>= queryFont dpy
let ascent = ascentFromFontStruct font

promptw = textWidth font (prompt cont)
screen = defaultScreenOfDisplay dpy
cursorx = textWidth font precursor

CHAPTER 3. MOUSETOXIN .CORE 42

cursorwidth = fromIntegral $
textWidth font (if atcursor ≡ ""

then " "
else atcursor)

lgc ← liftIO $ createGC dpy win
liftIO $ do

setFunction dpy lgc gXxor
setForeground dpy lgc $ whitePixelOfScreen screen
clearWindow dpy win
drawString dpy win gc 0 ascent (prompt cont)
drawString dpy win gc promptw ascent (inputBuffer state)
fillRectangle dpy win lgc (promptw + cursorx) 0 cursorwidth $ fontHeight font
freeGC dpy lgc
sync dpy False
where precursor = take (editingPoint state) (inputBuffer state)

atcursor = take 1 $ drop (editingPoint state) (inputBuffer state)

The extent of the editor is the position, width, and height of the window such
that as much as possible of the input buffer is visible. After every command that
may have modified the state, we should adjust the position and size of the window.
There is little cleverness involved in calculating extent, consisting of merely the sum
of the widths of the prompt and input buffer text, adding a space to the latter to
make room for the cursor.

fixEditorPosition :: EditorState → EditorContext →Window →WM ()
fixEditorPosition state cont win = withDisplay $ λdpy → do

((x , y), (width, height))← editorExtent state cont
liftIO $ moveResizeWindow dpy win x y width height

editorExtent :: EditorState
→ EditorContext
→WM ((Position,Position), (Dimension,Dimension))

editorExtent state cont = withDisplay $ λdpy → do
gc ← asks gcontext
font ← liftIO $ fontFromGC dpy gc >>= queryFont dpy
let twidth s = fromIntegral $ textWidth font $ s

width = max minWidth (twidth (inputBuffer state ++ " ") + twidth (prompt cont))
height = max 1 $ fontHeight font
screen = defaultScreenOfDisplay dpy
swidth = widthOfScreen screen

return ((fromIntegral (swidth − width), 0), (width, height))
where minWidth = 200

Chapter 4

Mousetoxin.Operations

As has been mentioned earlier, the fundamental design principle of Mousetoxin is
robustness. As a consequence, user commands will mostly not interact directly
with the window manager state as defined in Chapter 3 on page 5, but will instead
make use of the facilities described in this chapter; facilities that not only take care
to ensure the internal consistency of the program state, but also attempt to secure
a greater degree of static safety. This is primarily achieved through wrapping the
dynamically safe operations from Chapter 3 on page 5 in less powerful, but static,
interfaces.

The functions defined here also take a more abstract view of the data, making
it easier to work with the concepts (such as window numbers) that users and user
commands think in.

module Mousetoxin.Operations
(splitFocus
,WMOperation
, runWMOperation
,withWindows
, setFocusByRef
) where

import Mousetoxin.Core
import Control .Applicative
import Control .Monad .State
import qualified Data.Map as M
import System.IO

As an example of wrapping a dynamically safe function in a statically safe shell,
let us consider frame splitting (Section 3.1 on page 7), in particular splitting the
frame that currently has focus. While the function changeFrames does check that
the provided new focus frame reference is correct in the new frame tree, we have
to perform the check at runtime, as we cannot, in changeFrames , know how the
frame tree will be modified. Of course, we rarely make large modifications to the
frame tree. In fact, the most common operation will involve splitting a leaf of
the tree either horizontally or vertically. When that happens to the focus frame,
the focus frame path must be extended by a single element in order to be valid,
something we can certainly enforce statically.

43

CHAPTER 4. MOUSETOXIN .OPERATIONS 44

splitFocus :: SplitType → (()→ Either () ())→WM ()
splitFocus kind branch = do

ow ← otherWindow
changeFrames $ λ(t ,ff)→

(changeAtPath t ff $ λfr →
Split kind (1, fr) (1,Frame $ liftM window ow)

,ff ++ [branch ()])

newtype WindowRef = WindowRef Integer
newtype WMOperation a = WMOperation{runWMOperation :: WM a }
withWindows :: ([WindowRef]→WMOperation ())→WMOperation ()
withWindows f = WMOperation $

do refs ← map WindowRef < $ >M .keys < $ > gets managed
runWMOperation (f refs)

setFocusByRef :: WindowRef →WMOperation ()
setFocusByRef (WindowRef wr) = WMOperation $

do focusOnWindow =<<M .lookup wr < $ > gets managed

Chapter 5

Mousetoxin.Commands

module Mousetoxin.Commands
(cmdNext
, cmdPrev
, cmdSelect
, cmdOther
, cmdWindows
, cmdClose
, cmdKill
, cmdExec
, cmdColon
, cmdHoriSplit
, cmdVertSplit
, cmdUnsplitAll
, cmdNextFrame
, cmdResize
, cmdBanish
, cmdMeta
, cmdTest
, cmdTime
, cmdQuitMousetoxin
, cmdAbort
, cmdNewWM
, cmdTmpWM
) where

import Mousetoxin.Core
import Mousetoxin.Operations
import Control .Applicative
import Control .Concurrent
import Control .Monad .Error
import Control .Monad .State
import Control .Monad .Reader
import Data.List
import qualified Data.Map as M
import Data.Maybe

45

CHAPTER 5. MOUSETOXIN .COMMANDS 46

import Foreign.Storable
import Graphics.X11 .Xlib
import Graphics.X11 .Xlib.Extras
import System.Posix .Process
import System.Exit
import Data.Time.Clock
import Data.Time.Format
import Data.Time.LocalTime
import System.Locale

cmdNext :: WMCommand ()
cmdNext = liftWM $ do

ws ← gets managed
when (¬ $ M .null ws) $ do

curr ← focusWindowNumber
let new = fromMaybe (fst $ M .findMin ws) $ do

curr ′ ← curr
find (>curr ′) (M .keys ws)

focusOnWindow $ M .lookup new ws

cmdPrev :: WMCommand ()
cmdPrev = liftWM $ do

ws ← gets managed
when (¬ $ M .null ws) $ do

curr ← focusWindowNumber
let new = fromMaybe (fst $ M .findMax ws) $ do

curr ′ ← curr
find (<curr ′) (reverse $ M .keys ws)

focusOnWindow $ M .lookup new ws

cmdPrev ′ :: WMCommand ()
cmdPrev ′ = liftWM $ runWMOperation $ withWindows $ λwrs →

setFocusByRef ⊥

cmdSelect :: WMCommand ()
cmdSelect = switch ‘catchError ‘ (const cmdWindows)

where switch = do mwin ← accept (Window "Switch to window: ")
liftWM $ focusOnWindow (Just mwin)

The "other window" is the non-displayed window that has most recently been
accessed.

cmdOther :: WMCommand ()
cmdOther = liftWM $ do

other ← otherWindow
case other of

Just w → focusOnWindow $ Just w
Nothing → return ()

CHAPTER 5. MOUSETOXIN .COMMANDS 47

cmdWindows :: WMCommand ()
cmdWindows = do

liftWM $ do
ws ← gets managed
fw ← focusWindow
ow ← otherWindow
if (ws ≡ M .empty)

then message "No managed windows "
else let seperator w | fromMaybe False ((≡ w)< $ > fw) = "*"
| fromMaybe False ((≡ w)< $ > ow) = "+"
| otherwise = "-"

lineFor (num,w) = show num ++ seperator w ++ windowWMTitle w
in message $ intercalate "\n" $ map lineFor $ M .toList ws

The standard way to dismiss a window (possibly causing the owning program
to finish) is to send it a courteous message asking it to clean up and shut down. The
program may not close immediately, but rather ask the user whether to save any
eventual unsaved changes, or the like. It may even refuse to close at all, in case it is
in the middle of an uninterruptible operation. In any case, the following command
is a highly cooperative affair, as it should be. There is a theoretical possibility that
a given window does not support the window closing protocol, in which case we
inform the user that the more radical kill command (see below) must be employed.

cmdClose :: WMCommand ()
cmdClose = liftWM $ withDisplay $ λdpy → do

mw ← focusWindow
case mw of

Just (ManagedWindow{window = w })→ do
protocols ← liftIO $ getWMProtocols dpy w
wm_delete ← liftIO $ internAtom dpy "WM_DELETE_WINDOW" False
if wm_delete ∈ protocols then liftIO $

allocaXEvent $ λev → do
setEventType ev clientMessage
wm_protocols ← internAtom dpy "WM_PROTOCOLS" False
setClientMessageEvent ev w wm_protocols 32 wm_delete currentTime
sendEvent dpy w False 0 ev

else message "This window does not support the delete protocol, you have to use the kill command to close it."
Nothing → return ()

An application sometimes hangs or misbehaves, in which case it may not respect
the cmdClose function. Fortunately, Xlib provides the function killClient , with
which we can force a closing of a given X server client. This may not necessarily
close the actual misbehaving process, but most graphical programs will terminate
immediately if the X server disconnects them.

cmdKill :: WMCommand ()
cmdKill = liftWM $ withDisplay $ λdpy → do

fw ← focusWindow
case fw of

Just mw → do liftIO $ killClient dpy $ window mw
return ()

Nothing → return ()

CHAPTER 5. MOUSETOXIN .COMMANDS 48

cmdTest :: WMCommand ()
cmdTest = liftWM $ recurse (50, 50, 1, 0)

where recurse :: (Integer , Integer , Integer , Integer)→WM ()
recurse (, , , 500) = return ()
recurse (99, x2 , 1, c) = recurse (99, x2 ,−1, c)
recurse (x1 , 99,−1, c) = recurse (x1 , 99, 1, c)
recurse (x1 , x2 , v , c) = do

ff ← gets focusFrame
changeFrames $ λ(t , f)→

(changeAtPath t (init ff) $ λs →
case s of

(Split dir (, f1) (, f2))→
Split dir (x1 , f1) (x2 , f2)
→ s

, f)
liftIO $ threadDelay 1
recurse (x1 + v , x2 − v , v , c + 1)

cmdExec :: WMCommand ()
cmdExec = do

s ← accept $ String "/bin/sh -c "
liftWM $ spawnChild s $ λstatus →

case status of
Exited (ExitFailure code)→

message $ "/bin/sh -c \""
++ s
++ "\" finished ("
++ show code
++ ")"

→ return ()

The colon command reads in a single string parameter and evaluates it as a
Mousetoxin command string. The name is a reference to the fact that the default
keybinding is the colon. For ease of use we would like to support tab-completion
for the first part of the parameter, namely the command name; the arguments taken
by a given command are unfortunately opaque, so we cannot complete those. To
implement this, we start by defining a presentation type and a CommandArg in-
stance (see Section 3.8 on page 34).

data CommandString = CommandString String
instance CommandArg CommandString String where

accept (CommandString pstr) = do
cmds ← liftWM (M .keys < $ > commands < $ > asks config)
let compl str = filter (isPrefixOf $ cmdpart str) cmds

finish str = if elem (cmdpart str) cmds then
Right str else
Left $ "Unknown command ’"++ str ++ "’."

accepting pstr (return ◦ compl) (return ◦ finish)
where cmdpart = takeWhile (6≡ ’ ’)

We can now define the colon command.

CHAPTER 5. MOUSETOXIN .COMMANDS 49

cmdColon :: WMCommand ()
cmdColon = do s ← accept $ CommandString ":"

liftWM $ evalCmdString s

cmdHoriSplit :: WMCommand ()
cmdHoriSplit = liftWM $ splitFocus Horizontal Left
cmdVertSplit :: WMCommand ()
cmdVertSplit = liftWM $ splitFocus Vertical Left

cmdUnsplitAll :: WMCommand ()
cmdUnsplitAll = do

liftWM $ do
fw ← focusWindow
changeFrames $ λ(t ,)→

(changeAtPath t [] $ (const (Frame $ fw >>= return ◦ window))
, [])

cmdNextFrame :: WMCommand ()
cmdNextFrame = liftWM $ do

ps ← leafPaths < $ > gets frames
curr ← gets focusFrame
case dropWhile (6≡ curr) $ ps ++ ps of

(: new :)→ focusOnFrame new
→ return ()

cmdResize :: WMCommand ()
cmdResize = liftWM $ withDisplay $ λdpy → do

ff ← gets focusFrame
allmanaged ← M .toList < $ > gets managed
when (¬ $ null ff) $ withGrabbedKeyboard $ do

let screen = defaultScreenOfDisplay dpy
managedWindow win = snd < $ > find ((≡) win ◦ window ◦ snd) allmanaged
change d = changeFrames $ λ(t , f)→

(changeAtPath t (init ff) $
increaseBy d screen managedWindow

, f)
keymap = [((controlMask , xK _n), change 1>> loop)
, ((controlMask , xK _p), change (−1)>> loop)
, ((controlMask , xK _f), change 1 >> loop)
, ((controlMask , xK _b), change (−1)>> loop)
, ((controlMask , xK _g), return ())
, ((controlMask , xK _Escape), return ())]

loop = do ((s,m),)← readKey
fromMaybe loop $ lookup (m, s) keymap

loop
where increaseBy d screen manwin (Split dir (x1 , f1) (x2 , f2)) =

Split dir (split ′, f1)

CHAPTER 5. MOUSETOXIN .COMMANDS 50

(dim − split ′, f2)
where split = fromIntegral x1 / fromIntegral (x1 + x2) :: Double

dim = fromIntegral $
case dir of

Horizontal → heightOfScreen screen
Vertical → widthOfScreen screen

split ′ = bound 1 (dim − 1)
(truncate (split ∗ fromIntegral dim)

+ d ∗ lcm (incunit f1 dir manwin)
(incunit f2 dir manwin))

increaseBy ft = ft -- Should never happen.
incunit (Frame Nothing) = 1
incunit (Frame win) dir manwin = fromMaybe 1 $ do

(w , h)← sh_resize_inc =<< sizeHints < $ > (manwin =<< win)
case dir of

Horizontal → return $ fromIntegral h
Vertical → return $ fromIntegral w

incunit (Split (, f1) (, f2)) dir manwin =
lcm (incunit f1 dir manwin)

(incunit f2 dir manwin)
bound lower upper = max lower ◦min upper

The banish command exiles the mouse pointer to a disgraceful position in the
lower right of the screen, outside the users working area. We actually have to put it
slightly offset from the actual lower right, or it will seemingly wrap around to the
upper left.

cmdBanish :: WMCommand ()
cmdBanish = liftWM $ withDisplay $ λdpy → do

let scr = defaultScreenOfDisplay dpy
rootw ← asks rootW
liftIO $ warpPointer dpy none rootw 0 0 0 0

(fromIntegral $ widthOfScreen scr − 2)
(fromIntegral $ heightOfScreen scr − 2)

The meta command sends the prefix key to the focus window (if any). This
is needed for applications to receive the prefix key at all (since normal keyboard
input will be caught by Mousetoxin). Due to a gregarious flaw in the Xlib binding,
we have to manually set the type field of our synthetic event via a low level byte-
manipulation function. The byte order of the structure we manipulate is defined in
terms of a C struct in the Xlib documentation, so it should be safe, just not very
pretty.

cmdMeta :: WMCommand ()
cmdMeta = liftWM $ withDisplay $ λdpy → do

focus ← focusWindow
let send fw = do

(km, ks)← prefixKey < $ > asks config
rootw ← asks rootW
liftIO $ allocaXEvent $ λev → do

CHAPTER 5. MOUSETOXIN .COMMANDS 51

kc ← keysymToKeycode dpy ks
setKeyEvent ev (window fw) rootw none km kc True
pokeByteOff ev 0 keyPress
sendEvent dpy (window fw) False keyPressMask ev
sync dpy False

maybe (return ()) send focus

cmdQuitMousetoxin :: WMCommand ()
cmdQuitMousetoxin = liftIO exitSuccess

cmdTime :: WMCommand ()
cmdTime = do timezone ← liftIO getCurrentTimeZone

timeUTC ← liftIO getCurrentTime
let localTime = utcToLocalTime timezone timeUTC
liftWM $ message $ formatTime defaultTimeLocale "%a %b %d %H:%M:%S %Y" localTime

A command that aborts the current invocation attempt is occasionally useful,
for example for dismissing the overlay window.

cmdAbort :: WMCommand ()
cmdAbort = return ()

The newwm command starts another given window manager in place of Mouse-
toxin. The primary complexity is disabling enough of our dynamic environment
that a new window manager can start up properly, yet leave it sufficiently intact to
restore ourselves if the other window manager cannot be executed. In practice, we
must take the following steps:

• Unmap the overlay window so that the new window manager will not try to
take control of it

• Map all managed windows so the new window manager can find and control
them.

• Relinquish our exclusive grab on SubstructureRedirectMask events on the
root window.

We don’t need to keep track of exactly which windows were already mapped if
we need to restore the original configuration, as we assume that changeFrames will
ensure that the window managers notion of visible windows corresponds to which
windows are actually mapped in the X server.

cmdNewWM :: WMCommand ()
cmdNewWM = do newwm ← accept $ String "Switch to wm:"

liftWM $ withDisplay $ λdpy → do
root ← asks rootW
overlay ← asks overlayWindow
liftIO $ do unmapWindow dpy overlay

selectInput dpy root 0
wins ← map (window ◦ snd)< $ >M .toList < $ > gets managed

CHAPTER 5. MOUSETOXIN .COMMANDS 52

liftIO $ do forM _ wins $ mapWindow dpy
sync dpy False
selectInput dpy root 0
executeFile newwm True [] Nothing

‘Prelude.catch‘ (const $ return ())
-- Couldn’t execute, restore...

selectInput dpy root rootMask
forM _ wins $ mapWindow dpy

changeFrames id
message $ "Could not execute ’"++ newwm ++ "’."

While replacing the running Mousetoxin instance with another program (as in
newwm) is fairly simple to do properly, the tmpwm command, which temporar-
ily relinquishes window management control to another process, is impossible to
implement without quirks in the general case.

cmdTmpWM :: WMCommand ()
cmdTmpWM = do newwm ← accept $ String "Tmp wm:"

liftWM $ withDisplay $ λdpy → do
root ← asks rootW
overlay ← asks overlayWindow
wins ← map (window ◦ snd)< $ >M .toList < $ > gets managed
status ← liftIO $ do

unmapWindow dpy overlay
selectInput dpy root 0
ungrabKey dpy anyKey anyModifier root
sequence ([mapWindow dpy ,

flip (selectInput dpy) 0,
ungrabKey dpy anyKey anyModifier]< ∗ > wins)

sync dpy False
selectInput dpy root 0
pid ← forkProcess $ do

uninstallSignalHandlers
executeFile newwm True [] Nothing

‘Prelude.catch‘ (const $ return ())
-- Wait for the subproc to end, then restore,
-- returning status

getProcessStatus True False pid
< ∗mapWindow dpy overlay
< ∗ selectInput dpy root rootMask

grabKeys root
maybe (restore wins >>

message ("Could not execute ’"++ newwm ++ "’."))
(const rescan) status

where rescan = do modify $ λs → s
{managed = M .empty
, frames = Frame Nothing
, focusFrame = []
}

CHAPTER 5. MOUSETOXIN .COMMANDS 53

scanWindows
message "Mousetoxin is back!"
restore wins = withDisplay $ λdpy → do

sequence ([liftIO ◦ flip (selectInput dpy) clientMask ,
grabKeys]< ∗ > wins)

changeFrames id

Chapter 6

Mousetoxin.InputEditor

In this chapter we will implement the standard commands for input editing in
Mousetoxin. The self-insertion command, by which most text is actually entered,
is part of the editor code itself, and is thus found in Chapter 3 on page 5, while
the bindings from keyboard invocations to commands if part of the configuration
described in Chapter 7 on page 59. We shall prefix all exported commands with
edit for clarity, as in editBackChar .

module Mousetoxin.InputEditor (editAbort
, editDone
, editBackwardChar
, editForwardChar
, editBackwardWord
, editForwardWord
, editBeginningOfLine
, editEndOfLine
, editForwardDeleteChar
, editBackwardDeleteChar
, editCompleteNext
, editCompletePrev
) where

import Control .Applicative
import Data.Char
import Data.List
import Data.Maybe
import Control .Monad .State
import Control .Monad .Reader
import Mousetoxin.Core

The abort command merely returns the Abort CommandResult . Recall that
this will cause input editing to terminate abnormally.

editAbort :: EditCommand CommandResult
editAbort = return Abort

A similar case is the finishing command, which will cause input editing to ter-
minate normally.

54

CHAPTER 6. MOUSETOXIN .INPUTEDITOR 55

editDone :: EditCommand CommandResult
editDone = return Done

Many commands will do nothing but change the editing point by some measure.
To help with this, we define a helper function that will return Fail if it cannot move
at all, No_Op if it can move at least a single character.

pointBounds :: Int → EditCommand (Int ,String)
pointBounds d = do

buf ← gets inputBuffer
if (d < 0)

then return (0, "Beginning of buffer")
else return (length buf , "End of buffer")

movePoint :: Int → EditCommand CommandResult
movePoint d = do ep ← gets editingPoint

(bound , emsg)← pointBounds d
if (ep ≡ bound)

then return $ Fail emsg
else do modify $ λs → s{editingPoint = ep + d }

return No_Op

The two most basic commands move the editing point forward and backward.

editBackwardChar :: EditCommand CommandResult
editBackwardChar = movePoint (−1)
editForwardChar :: EditCommand CommandResult
editForwardChar = movePoint 1

Two useful commands move by words, which we (and Ratpoison) interpret to
mean across all non-alphanumerics in sequence, then across all alphanumerics in
sequence. They are both defined in terms of more primitive functions that move
point until the character at point fulfils some given predicate.

moveBackwardUntil :: (Char → Bool)→ EditCommand CommandResult
moveBackwardUntil p = do

point ← gets editingPoint
buf ← gets inputBuffer
let end = fromMaybe point (findIndex p $ reverse $ take point buf)

d = −end
movePoint d

editBackwardWord :: EditCommand CommandResult
editBackwardWord = do moveBackwardUntil isAlphaNum

moveBackwardUntil (¬ ◦ isAlphaNum)
moveForwardUntil :: (Char → Bool)→ EditCommand CommandResult
moveForwardUntil p = do

point ← gets editingPoint
buf ← gets inputBuffer
let end = fromMaybe (length buf − point) (findIndex p $ drop point buf)

d = end
movePoint d

CHAPTER 6. MOUSETOXIN .INPUTEDITOR 56

editForwardWord :: EditCommand CommandResult
editForwardWord = do moveForwardUntil isAlphaNum

moveForwardUntil (¬ ◦ isAlphaNum)

As the input editor is single-line, the commands for moving point to the begin-
ning and end of line are quite simple indeed, merely moving point to zero and the
size of the input buffer respectively.

editBeginningOfLine :: EditCommand CommandResult
editBeginningOfLine = do modify $ λs → s{editingPoint = 0}

return No_Op
editEndOfLine :: EditCommand CommandResult
editEndOfLine = do modify $ λs → s{editingPoint = length $ inputBuffer s }

return No_Op

To support our selection of deletion commands, we capture common function-
ality by defining a simple helper function to delete a range of characters in the input
buffer. The function returns the deleted string, not a CommandResult , as we do
not consider a deletion to be a failure even if there are no characters to delete.

deleteRange :: Int → Int → EditCommand String
deleteRange x y = do

before ← take low < $ > gets inputBuffer
str ← take diff < $ > drop low < $ > gets inputBuffer
after ← drop high < $ > gets inputBuffer
modify $ λs → s{inputBuffer = before ++ after }
return str

where low = min x y
high = max x y
diff = high − low

The backward and forward deleting functions (delete and backspace to most
users) are defined to simply delete one-character ranges.

editForwardDeleteChar :: EditCommand CommandResult
editForwardDeleteChar = do point ← gets editingPoint

(bounds,msg)← pointBounds 1
if (point ≡ bounds)

then return $ Fail msg
else do deleteRange point $ point + 1

return No_Op
editBackwardDeleteChar :: EditCommand CommandResult
editBackwardDeleteChar = do point ← gets editingPoint

deleteRange point $ point − 1
editBackwardChar

Completion is somewhat involved due to the heavy reliance on editor state. At
the basic level, we wish to replace the text to the left of the editing point with
some completion of that text. However, if there are multiple valid completions,
the user must be provided with a way to cycle though them. This is the purpose
of the completing field in the editor state, a field that is either Nothing (indicating

CHAPTER 6. MOUSETOXIN .INPUTEDITOR 57

that we are not currently cycling through completions), or a list of completions
tagged with Just . In this way, we can support completion-cycling through multiple
command invocations. The alternative would be for the completion command to
read keypress events from the X server on its own, and cycle through completions
as long as it receives Tab keypresses (or whatever is appropriate). This, however,
would be very messy and require duplicating a large amount of complex input logic
within the completion command.

As a lesser consideration, we also do not impose a strict way of cycling through
the completion list. We intend to support at least forwards and backwards cycling,
and we might as well permit a general selection function.

completeByDirec :: (String → [String]→ Maybe String)
→ EditCommand CommandResult

completeByDirec select = do
prepoint ← liftM2 take (gets editingPoint) (gets inputBuffer)
postpoint ← liftM2 drop (gets editingPoint) (gets inputBuffer)
let cycleCompletions l =

case select prepoint l of
Nothing → return No_Op
Just c → do

modify $ λs → s{inputBuffer = c ++ postpoint
, editingPoint = length c}

return Completion
newCompletions = do

c ← asks completer
compls ← liftWM $ c prepoint
case compls of

[]→ return No_Op
(comp : rest)→ do

modify $ λs → s{inputBuffer = comp ++ postpoint
, editingPoint = length comp
, completing = Just $ comp : rest }

return Completion
compl ← gets completing
case compl of

Just []→ return No_Op
Just l → cycleCompletions l
Nothing → newCompletions

The concrete commands for completion are now fairly simple. The command
that moves forward through the completion list, in case we are cycling, merely
identifies the location of the current completion, and yields the next one. Doubling
the list of completions is a clever trick to ensure that we’ll find a “next” completion
even if the current completion is last in the list.

editCompleteNext :: EditCommand CommandResult
editCompleteNext = completeByDirec $ λs l →

case dropWhile (6≡ s) (l ++ l) of
(: c :)→ Just c
→ Nothing

CHAPTER 6. MOUSETOXIN .INPUTEDITOR 58

The command for backwards cycling is just as simple, merely reversing the list
before finding the “next” completion.

editCompletePrev :: EditCommand CommandResult
editCompletePrev = completeByDirec $ λs l →

case dropWhile (6≡ s) (reverse $ l ++ l) of
(: c :)→ Just c
→ Nothing

Chapter 7

Mousetoxin.Config

This chapter describes the default user configuration of Mousetoxin (represented by
the WMConfig–type). We also implement a facility for parsing a user configuration
file. The actual commands are defined in Chapter 5 on page 45.

module Mousetoxin.Config
(versionString
, defaultConfig
) where

import Mousetoxin.Core
import Mousetoxin.Commands
import Mousetoxin.InputEditor
import Graphics.X11 .Types
import Data.Map as M

Mousetoxin follows a very simple versioning scheme, where development ver-
sions are indicated by suffixing the string -dev.

versionString :: String
versionString = "1.0-dev"

defaultConfig :: WMConfig
defaultConfig = WMConfig
{displayStr = ":0.0"
, prefixKey = (controlMask , xK _t)
, overlayBorderWidth = 1
, overlayPadding = (4, 0)
, keyBindings = M .fromList [((0, xK _n), "next")

, ((0, xK _p), "prev")
, ((0, xK _0), "select 0")
, ((0, xK _1), "select 1")
, ((0, xK _2), "select 2")
, ((0, xK _3), "select 3")
, ((0, xK _4), "select 4")
, ((0, xK _5), "select 5")
, ((0, xK _6), "select 6")

59

CHAPTER 7. MOUSETOXIN .CONFIG 60

, ((0, xK _7), "select 7")
, ((0, xK _8), "select 8")
, ((0, xK _9), "select 9")
, ((controlMask , xK _t), "other")
, ((0, xK _a), "time")
, ((0, xK _w), "windows")
, ((0, xK _g), "abort")
, ((0, xK _k), "close")
, ((0, xK _K), "kill")
, ((0, xK _c), "exec urxvt")
, ((0, xK _exclam), "exec")
, ((0, xK _colon), "colon")
, ((0, xK _s), "hsplit")
, ((0, xK _S), "vsplit")
, ((0, xK _Q), "unsplitall")
, ((0, xK _Tab), "nextframe")
, ((0, xK _r), "resize")
, ((0, xK _b), "banish")
, ((0, xK _t), "meta")
, ((0, xK _y), "test")
, ((mod1Mask , xK _q), "quit")
, ((controlMask , xK _g), "abort")]

, commands = M .fromList [("next", cmdNext)
, ("prev", cmdPrev)
, ("select", cmdSelect)
, ("other", cmdOther)
, ("time", cmdTime)
, ("windows", cmdWindows)
, ("delete", cmdClose)
, ("close", cmdClose)
, ("kill", cmdKill)
, ("exec", cmdExec)
, ("colon", cmdColon)
, ("hsplit", cmdHoriSplit)
, ("vsplit", cmdVertSplit)
, ("unsplitall", cmdUnsplitAll)
, ("only", cmdUnsplitAll)
, ("nextframe", cmdNextFrame)
, ("focus", cmdNextFrame)
, ("resize", cmdResize)
, ("banish", cmdBanish)
, ("meta", cmdMeta)
, ("test", cmdTest)
, ("quit", cmdQuitMousetoxin)
, ("abort", cmdAbort)
, ("newwm", cmdNewWM)
, ("tmpwm", cmdTmpWM)]

, editCommands = M .fromList
[((controlMask , xK _g), editAbort)
, ((0, xK _Escape), editAbort)

CHAPTER 7. MOUSETOXIN .CONFIG 61

, ((0, xK _Return), editDone)
, ((controlMask , xK _b), editBackwardChar)
, ((0, xK _Left), editBackwardChar)
, ((controlMask , xK _f), editForwardChar)
, ((0, xK _Right), editForwardChar)
, ((mod1Mask , xK _b), editBackwardWord)
, ((mod1Mask , xK _f), editForwardWord)
, ((controlMask , xK _a), editBeginningOfLine)
, ((0, xK _Home), editBeginningOfLine)
, ((controlMask , xK _e), editEndOfLine)
, ((0, xK _End), editEndOfLine)
, ((controlMask , xK _d), editForwardDeleteChar)
, ((0, xK _Delete), editForwardDeleteChar)
, ((0, xK _BackSpace), editBackwardDeleteChar)
, ((0, xK _Tab), editCompleteNext)
, ((0, 0 xfe20), editCompletePrev)]
}

	Introduction
	Startup logic
	Mousetoxin.Core
	Frame Representation
	Dynamic Window Manager State
	Static configuration
	The WM Monad
	Manipulating the window manager state
	Signals and events
	Talking to X
	Command execution
	The Input Editor

	Mousetoxin.Operations
	Mousetoxin.Commands
	Mousetoxin.InputEditor
	Mousetoxin.Config

